
SAS : A Secure Aglet Server
Evens Jean

Department of Computer
Science and Engineering
The Pennsylvania State

University
University Park, PA 16802

jean@cse.psu.edu

Yu Jiao
Computational Sciences
and Engineering Division

Oak Ridge National
Laboratory

Oak Ridge, TN 37831

jiaoy@ornl.gov

Ali R. Hurson
Department of Computer
Science and Engineering
The Pennsylvania State

University
University Park, PA 16802

hurson@cse.psu.edu

Thomas E. Potok
Computational Sciences
and Engineering Division

Oak Ridge National
Laboratory

Oak Ridge, TN 37831

potokte@ornl.gov

ABSTRACT
Despite the fact that mobile agents have received increasing
attention in various research efforts, the use of the paradigm in
practical applications has yet to fully emerge. With the presence
of infrastructure to support the development of mobile agent
applications, security concerns act as the primary deterrent against
such trends. Numerous studies have been conducted to address the
security issues of mobile agents with a strong focus on the
theoretical aspect of the problem. This work attempts to bridge the
gap from theory to practice by analyzing the security mechanisms
available in Aglet. We herein propose several mechanisms,
stemming from theoretical advancements, intended to protect both
agents and hosts in order to foster the development of business
applications that fully exploit the benefits of agent technology.
The proposed mechanisms lay the foundation for implementation
of application specific protocols dotted with access control,
secured communication and ability to detect tampering of agent
data. We demonstrate our contribution through application
scenarios of a prototyped Information Retrieval system.

Categories and Subject Descriptors
C.2.3 [Communication Network]: Network Operations,
Network Monitoring, Network Management
D.4.6 [Operating Systems]: Security and Protection, Access
Controls, Authentication
H.2.0 [Database Management]: Security, Integrity and
Protection
General Terms
Security, Economics, Reliability, Experimentation, Management

Keywords
SAS, Aglet, MAMDAS
1. INTRODUCTION
Mobile Agents refers to a programming paradigm focused around
the ability for a program to halt its execution, move to a new
environment where execution can then be resumed. Even with the
development of numerous mobile agent platforms, the use of

mobile agents have not transcended from theoretical to practical
applications. During recent years, research advances have led to
the introduction of a Mobile Agent-based Mobile Data Access
Systems (MAMDAS) [10, 11, 12], to facilitate the use of mobile
agents in applications requiring database access as agents travel
between hosts. The system has been prototyped using the Aglet
mobile agent platform. The Aglet platform is fairly documented,
easy to install, has received great press coverage and is currently
maintained by the open-source community [14]. With the
introduction of an infrastructure such as MAMDAS supporting
the platform, aggressive development of mobile agent applications
on the Aglet platform should be imminent. Unfortunately, such is
not the case as the paradigm is plagued with numerous security
issues. The security threats facing mobile agents, including
Aglets, have been studied in depth and categorized into host-to-
agent and agent-to-host [6]. Solutions to such threats have to this
point only been introduced from a theoretical perspective.

In our effort to help foster the emergence of mobile agents to
address practical issues in the business world, we conducted an
analysis of the security options available in the Aglet platform.
Our work resulted in the development of a Secured Aglet Server
(SAS) providing:

1. Secured communication
2. Controlled resource consumption of agents
3. Integrity and reliability of agent’s data

In discussing our findings we start out by introducing the
necessary background in section 2. Section 3 analyzes the
vulnerabilities of the current Aglet server. We introduce SAS in
section 4. Section 5 presents an information retrieval prototype
designed on top of MAMDAS to demonstrate the contribution of
our work. We conclude our discussion in section 6 highlighting
our future work.

2. BACKGROUND
Mobile agents lend themselves nicely to searches and computation
that requires parallel processing and network roaming. The
mobility of mobile agents may depend on predetermined itinerary
or intermediate computation results. Along with flexibility in
system design, agent mobility also introduces security concerns.
The categorization of the threats plaguing mobile agents is done
based on the origination of the attack; as such we have agent-to-
host, as well as host-to-agent attacks. Such security issues in
mobile agents have been studied and some of the proposed
solutions include but are not limited to the following:

1. Code signing, access control, proof carrying code and path
histories to protect the hosts [6, 5, 18, 20].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
Computer Security Conference 2007, April 11-13, 2007,
Myrtle Beach, SC, USA. Copyright 2007 CSC 2007

2. Tracing, obfuscation, trusted hardware as well as encrypted
functions and data to protect the mobile agents [6, 5, 1, 20]

Research in mobile agent security is still an open field, and many
of these approaches remain theoretical. Our goal is to design and
implement a secure agent platform based on the Aglet workbench,
which incorporates existing theoretical solutions and provides a
foundation for secure application development.

3. VULNERABILITY ANALYSIS OF IBM
AGLET

In presenting our finding as we conducted a vulnerability analysis
of the Aglet platform, we will start with a brief overview of the
environment in section 3.1. The remaining subsections will
showcase the vulnerabilities that we have identified in the
platform.

3.1 IBM Aglet Architecture
Aglet is a library written in Java, released by IBM to support the
development of mobile code. The execution environment within
which Aglets are executed is referred to as the Aglet’s Context
and is responsible for enforcing the security restrictions of the

mobile code. Aglets run on the Tahiti Server and may adopt
seven different states (as illustrated in Figure1) during their life
cycle [16, 17]:

• Activated: Aglets are loaded from storage and allowed to
resume execution.
• Deactivated: Aglet’s execution is halted and its state is saved.
• Cloned: Aglet is copied for concurrent execution.
• Disposed: Execution of the aglet ceases permanently
• Created: Aglet is initialized for execution
• Dispatched: Aglet is sent to another execution context.
• Retracted: Aglet is obtained from another execution context.

The Aglet architecture consists of two main layers which are the
Runtime Layer running on top of the Communication Layer. The
tight coordination between these two layers provides Aglets with
their execution environment. The Runtime Layer manages Aglets’
bytecode, and enforces the security restrictions in effect in the
environment. The Communication Layer, on the other hand,
provides the basic mechanisms to allow Aglet’s mobility and
message passing through support of Agent Transfer Protocol
(ATP) [15] and RMI [19].

3.2 Communication Vulnerability
Of primordial importance to any agent systems is the ability to
allow agents to communicate and roam the network. It is therefore

imperative that such communication and mobility be performed in
a secure manner. As mobile agents, Aglets suffer from the same
security vulnerabilities that plague the programming paradigm.
The interception of Aglets as they move from one host to another
is a serious threat encompassed by the need to protect agents from
malicious hosts. Protecting Aglets against malicious hosts entails
ensuring that the agents and their messages are sent exclusively to
the intended entities (hosts or agents). In fact, we believe that no
mobile agent system can allege to protect agents from malicious
hosts if it cannot verify the identities of the hosts in the system.

Presently, the Tahiti server supports authentication of the entities
that wish to establish communication, typically the authentication
of servers. The communicating parties in Tahiti are authenticated
using a Challenge-Response scheme based on the Diffie-Hellman
algorithm [3], a cryptographic protocol, which allows two parties
to exchange a secret key over an insecure medium without any
prior secrets. The authentication of the entities is done in phases
once one party has initiated the cycle, and is based on security
domains defined as a region with homogeneous level of security
[18].

In our attempt to determine the efficiency of Tahiti in protecting
the communication channels used by Aglets, we established a link
between two instances of the server running on different
machines. Our goal is to try and intercept the packets being
exchanged between the two servers, as the interception of such
packets can easily lead to the reconstruction of the Aglet or
message being transmitted. We used a third machine and the
readily available Dsniff software [4] to try and intercept the
packets between the two servers and display the information being
captured. Figure 2 displays some of the packets captured by the
attacker, containing the Aglet in its serialized state as it is being
transmitted over the unsecured communication channel. Pertinent
information in Figure 2 is highlighted in red, such as the AgletID
of the agent, and part of the Aglet’s data. It is not surprising to us
that we were able to easily carry such an attack being that Tahiti
does not use any encryption during communication. The
authentication scheme described earlier is used only to verify the

Figure 1: Aglet Lifecycle

Figure 2: Captured Packets

identity of the servers but not as a prelude to a key exchange that
would be used to encrypt future communication. The
authentication scheme was designed to prevent security attacks,
such as the reflection attack, against the communication layer of
Tahiti.

Our experiment shows that the authentication scheme is still
susceptible to more complex attacks such as man-in-the-middle
(MITM) attacks carried out through eavesdropping on a
communication channel with the ability to modify or insert data
into the channel. It also exposes a great weakness in Tahiti in that
Aglets can be easily intercepted while traveling on the insecure
communication channels and be made to execute on a malicious
host. Our first experiment has thus led us to conclude that the
Aglet framework cannot currently satisfy the requirement of
agents to migrate exclusively to intended hosts. Hence there is an
obvious need to address such a shortcoming of the framework in
order to increase its use in commercial applications.

3.3 Data Vulnerability
Protecting mobile agents against malicious hosts must occur on
two different levels. Agents must first be able to freely roam the
network and travel only to intended hosts (see section 3.2);
moreover, agents must be able to freely execute on the hosts onto
which they have migrated. To this day, there exists no highly
acclaimed solution to the problem of protecting an agent from a
malicious host, although numerous proposals have been submitted
to address the issue of identifying malicious hosts [5, 1]. When an
Aglet arrives at a host to perform a computation, it is at the
complete mercy of the host in question. Hosts are capable of
manipulating the Aglet’s data collected from previous hosts [7].
The danger here is that if we consider the case where an Aglet is
to collect ticket prices from different Airlines, one of the Airlines
might raise the price of all other Airlines and thus force the user to
purchase the ticket from its company even though it may not have
the best price available. Tahiti presently has no mechanisms in
place to help detect tampering of an Aglet’s data from a malicious
host nor does it provide any mechanism to help identify the
existence of such hosts. It is thus imperative that such issue be
addressed to foster the use of agent in privacy-aware applications.

3.4 Resource Vulnerability
The ability for hosts to support the execution of potentially
malicious agents has been well discussed in the literature within
the scope of mobile agents in general [6, 20, 1, 2]. Aglets suffer
from the same limitations in that malicious Aglets could be
detrimental to the proper functioning of a host. Being that Aglets
are built on top of Java technology, the Tahiti server makes
adequate use of the Java sandboxing techniques to protect hosts.
Aglets execute within a runtime environment, which controls their
access to system resources such as files and devices. Aglets are
allowed to execute a set of actions on themselves that allows them
to move from one execution state to another during the Aglets
lifecycle.

During the course of our investigation, we have identified an
inherent vulnerability of host resources stemming from the normal
lifecycle of Aglets. To illustrate our novel observation, we
implemented an Aglet application whose purpose is to attempt to
consume as much resources as possible on a host through traversal
of the Aglet’s normal lifecycle stages. To ascertain the effect of
such a behavior from an Aglet, we considered the best-case
scenario in which the clones of the Aglet do not carry out any

computation, nor does the Aglet itself carry any computationally
expensive operations. The developed Aglet application was
instantiated from a Tahiti server running on a 1.0Ghz G4
processor with 1.0GB of memory. The application that we
developed carried out the attacks on the host through repeated
cloning, as well as by creating and dispatching new Aglets to a
target host. The attack was successfully carried as well through
the activation or retraction of Aglets. Figure 3 depicts the amount
of memory used by the server based on the number of active
Aglets. The running instances of the Aglets have a dramatic effect
on the amount of memory being used by the Tahiti server. On
average, with approximately 7000 instances of the Aglet
application, the server reports a java.lang.OutOfMemoryError and
is then unable to process any more requests including the creation
of new Aglets.

Our research has successfully identified and exposed the resource
vulnerability of Tahiti that can be easily exploited by a malicious

Aglet or even by an Aglet that has been improperly designed. The
erroneous introduction of an infinite loop (or even a loop with a
large number of repetitions) around a statement that would cause
the Aglet to clone itself, or create an instance of another aglet
could lead to disastrous effects on the resource utilization of a
host. The lack of infrastructure to protect hosts is as detrimental to
the adoption of the paradigm as is the threats faced by the agents
and ought to be tackled to increase adoption of the paradigm.

4. SECURE AGLET SERVER (SAS)
In order to address the security vulnerabilities discussed in
section3, we designed and implemented a Secured Aglet Server
(SAS). SAS’ look and feel closely resembles that of Tahiti, its
architecture is a replica of Tahiti’s architecture with some added
functionalities to support the new security mechanisms.

4.1 Secure Communication
As was shown earlier, the Communication Layer of Aglets makes
use of unsecured protocol, thus leaving the framework open to a
range of attacks, which we intend to address in our research. The
current industry standard in addressing communication security
being SSL [8], keeping in line with our intent of fostering the

Figure 3: Effect of DoS Attack on Host’s Memory

adoption of agents in commercial applications, we opted to
implement SSL in the Tahiti server, using the Java Secure Socket

Extension (JSSE) [13]. JSSE provides a standard Application
Programming Interface (API) allowing for the creation of secure
connection between hosts with the option of having both parties
authenticated (see Figure 4). The sockets created by the JSSE API
are protocol-independent and thus needs to be configured to work
with the protocols used by the Aglets framework.

The implementation of the SSL sockets created by JSSE into SAS
occurred at the Communication Layer with the introduction of a
sub-layer (SSL Layer) below the protocols. The sub-layer handles
the creation and management of the secure sockets for use by the
different protocols. Our implementation of the sub-layer provides
administrators with the mechanisms necessary to implement
application-specific protocols. As such, administrators can
customize the server to accept connections from clients, which do
not support SSL or to reject such connections. Allowing for an
administrator to request that unauthenticated clients be denied
connectivity to the server is justified by the observation that
communication in the Aglet framework occurs only between
servers; hence it is reasonable to expect each server to possess a
signed certificate. The Cipher suites to be used on the server’s
connections can also be specified; hence servers can enforce
different encryption strength on their communication channels all
within the boundaries of SSL. Through the use of SSL sockets in
our implementation, we have endowed the Aglet framework with
the ability to communicate over secure channels capable of
authenticating the parties involved, refusing unsecured
connections and adjusting the security level on the channels.
Through the availability of SSL in SAS, administrators will gain
control of the level of security enforced on network links; most
importantly, it provides a standard solution trusted in the industry
to handle secure communication.

Figure 4: SAS Security Preference Window

Figure 5: Signed Message Digest printout

Figure 6: Detection of Instance Violation by MonitorAglet

4.2 Secure Data
While the scenario discussed in section 3.3 cannot be currently
prevented, it is necessary for an Aglet to have a way of
determining whether the information that it has collected over
numerous hosts has been tampered with. Granting Aglets the
ability to detect tampering with their data required that we
extended the functionalities of the server. The Runtime Layer of
SAS is extended to support the creation of Message Digests using
the Java Cryptography Extension (JCE) [9] as well as the ability
to digitally sign objects. We provide Aglets with a java class
library that implements the concept of Read-Only data. The class
library allows agents to save data but can only read the data set in
question once it has been submitted to the class library. The
library makes use of the extension of SAS to compute and store
message digests of each datum as it is submitted to the library (see
Figure 5). With the new functionalities of SAS in place, the
library obtains a signed copy of the message digest computed by
the host along with the host’s certificate. An Aglet can retrieve the
message digests stored by the library and use the corresponding
certificate to ensure that its data has not been tampered with. The
introduction of computed message digests and digital signatures in
the Runtime Layer of SAS provides Aglets with the capability of
detecting active malicious hosts in the agent’s itinerary.

4.3 Secure Resources
Dealing with the possibility of an Aglet overusing the resources of
a host as it traverses its normal lifecycle, requires the design of a
scheme to not only specify and track the resources in use by an
Aglet but also to take proper actions once an Aglet attempts to

overuse the host’s resources. The design of such a scheme led us
to the introduction of a MonitorAglet in SAS. The MonitorAglet
is responsible for tracking the resources, in terms of instances, in
use by an Aglet to ensure that the specified limit is never
exceeded. The MonitorAglet makes use of a Resource data
structure to track the number of instances of a particular Aglet that
are present in the system. The data structure is built based on the
properties of Aglets such as their IDs. As such, if the Resource
data structure manages class names of the form “Attacks.*”; any
Aglet whose name starts with “Attacks” would belong to the
structure.

Within the scope of SAS, we define instances as the instantiation
of an Aglet or Message object. Furthermore, an Aglet B is an
instance of an Aglet A if and only if one of the following is true

1. B belongs to the same Resource object as A
2. A created, retracted or activated B.
3. B is a clone of A.

Managing the number of instances of an Aglet that are present in
the system is then reduced to keeping track of the number of
instances of an Aglet a particular Resource has. Each Resource
object contains a maximum number of instances to allow in the
system; once that limit has been reached, the MonitorAglet
prevents the creation, activation or retraction of any other
instances of the Aglets in the Resource until one of the instances
of the Resource has been deactivated, dispatched or disposed of
(see Figure 6). An identical scheme is used to control the number
of messages an Aglet can delegate in the system.

A notable feature provided by the MonitorAglet is the ability for a
remote Aglet to contact the Monitor and determine the Resources
and Permissions that it should expect to have available if it were
to migrate to the host where the Monitor Aglet is executing. This
allows Aglets to decide whether they should move to a host
depending upon their requirements.

As we attempt to protect hosts against malicious agents, we have
introduced powerful capabilities to the Aglet framework. It is now
possible to limit the number of instances of an Aglet executing on
a host, thereby preventing the attack described earlier. Moreover,
Aglets are now able to determine in advance whether they should
migrate to a host based on the resources and access restrictions in
place in the host of interest

5. PRIVACY-PRESERVING
INFORMATION RETRIEVER (PIR) – A
CASE STUDY

As part of our research, we have prototyped a Privacy-preserving
Information Retriever (PIR) to highlight the contributions of the
proposed work. The PIR prototype (see Figure 7) is based on
MAMDAS, a multidatabase access system tailored to support user
mobility. We envision the use of the PIR to help companies make

a hiring decision about an individual. Government agencies along
with private corporations maintain pertinent data that are, for the
most part, readily available to the public. Arrest records, credit
report as well as past salaries represent some of the information
that may come into play in hiring a potential employee. The PIR
has its own set of security requirements. As we explore such
requirements, we will demonstrate the mechanisms available in
SAS to provide the required level of security.

Being built on top of MAMDAS, PIR makes heavy use of agents
to collect the information of interest. Notably, PIR uses an Aglet,
DataSearchWorker (DSW), to roam a hierarchical network
structure that reflects the semantic relationship of the datasets.
Due to the potential sensitivity of the data collected by the DSW,
it is imperative that the Aglet only travels to hosts of interest to
the task at hand to ensure reliability of the data. As we have
shown earlier, third parties can intercept agents in Tahiti, thereby
compromising the security of PIR. On the other hand, through the
use of SSL, SAS provides applications with the necessary
mechanisms to ensure that delegated agents only travel to
intended hosts. The prototyped PIR makes use of the available
mechanism to attain the communication security needed to
prevent access to pertinent data through authentication of the
entities in the network.

Figure 7: PIR Screenshot with Data Integrity Check

To collect the required data, the DSW will visit various hosts. The
hosts visited may be past employers of the hiring candidate, and
thus may benefit from sabotaging the candidate. If the candidate’s
records are altered, such as through insertion of arrests records or
increase of past salaries, the collected data cannot be used to make
a reliable decision. PIR requires that the integrity of the collected
data be maintained as it will be used in a manner that will affect
the future of the company. While Tahiti does not provide any
support to applications with similar requirements, SAS provides
the basic functionalities to allow detection of data tampering. The
PrivateData library, discussed earlier, allows applications to profit
from such functionalities. Through the use of the library, PIR
allows users to verify the integrity of the result, as the DSW
requires hosts to sign any collected data. If any of the collected
data has been corrupted, PIR can notify the user, should the latter
decide to go through with the verification step (see Figure 7).

Aside from communication and data security, equally important to
PIR is the issue of ensuring that the resources of hosts are not
consumed in vain. Malicious agents, through lifecycle operations,
may subject hosts to DoS attacks; such occurrence would prevent
PIR agents from accomplishing their goals and collect the
information of interest. Within PIR, multiple agents may need
access to the same host, as some personal information, such as
credit reports or criminal records are on a limited set of hosts.
Similar to any application, data availability is of primordial
importance in our prototyped PIR. The existence of the system
would be futile if it could not collect the criminal records of a
potential employee. Tahiti, as we have discussed, can be subjected
to such DoS attacks as it strays away from the micro-management
of Aglets. SAS addresses the issue through the introduction of a
MonitorAglet to track the actions of agents in the system. The
MonitorAglet ensures the availability of DSW’s hosts of interests
by limiting the number of instances of agents.

The heterogeneity with which the PIR prototype operates yields
an underlying issue. The set of operations that the DSW can
perform will vary from one host to another. This results in the

possibility for the DSW to be dispatched to a host with relevant
information only to be denied the right to execute on such hosts.
The occurrence of the depicted scenario leads to inefficient use of
network resources. While such a case is not in and of itself a
security threat, MonitorAglet provides PIR with support to reduce
such occurrences. The DSW agent in PIR ensures that it will be
allowed to execute its code to completion before migrating to a
host. This is accomplished by dispatching a surrogate agent
(LightAgent) to the destination host. LightAgent contacts the
MonitorAglet of the destination host and determines whether or
not the host will support execution of the DSW (see Figure 8). As
such DSWs can decide to migrate to a host based on whether or
not they will have access to the required resources. The issue is
highly important since agents may need to execute different
portions of their code to cope with heterogeneity of the sources,
such as the manner in which to access a database. This is
evidenced by the possible need to use a package such as
sun.jdbc.odbc to acquire the necessary data. Within our prototype,
such scenario is modeled by the need for DSWs to access flat file
databases. Under such a condition, PIR can dispatch the surrogate
agent to determine whether the DSW will have the necessary
permission to access the database of interest.

The PIR prototype has been achieved in SAS due to the fact that
SAS provides the basic functionalities required to sustain a secure
system. Figure 4 shows the prototype running on the SAS server.
PIR allows users to specify the global term to use in the search
along with the semantic specifications. Once the results are
collected, the user can choose to verify their integrity. SAS
allowed the agents in the prototyped PIR to travel only to intended
hosts through authentication. Moreover, the integrity of the
collected data can be verified through the use of the PrivateData
library. Lastly, through the MonitorAglet, SAS provides data
availability to the prototype along with the ability for PIR agents
to not migrate to a host that will not support their full execution.

6. CONCLUSION
We have herein addressed the security issues present in the Aglet
framework through the introduction of SAS The implemented
mechanisms in SAS are intended to help foster the emergence of
mobile agents in commercial applications. We have addressed
both aspects of Aglets security from a practical standpoint. SAS
provides secured communication channel, detection of data
tampering and controlled number of instances of agents on the
server. Moreover, agents in SAS may determine expected
resources from future hosts. Through the PIR prototype, we have
demonstrated how the proposed mechanisms can be used to foster
secure development of agent applications.

Presently, Aglets can detect the tampering of their data; however,
protecting the privacy of the agent’s data remains an issue. SAS
can allow hosts to starve non-malicious agents, and such a case
should be addressed in future work. Moreover, hosts with limited
power are still at risk against gratuitous exploitation of CPU
cycles. Further efforts to secure the framework should focus on
the aforementioned issues.

7. ACKNOWLEDGMENTS
The National Science Foundation under the contract IIS-0324835
in part has supported this work.

Notice: This manuscript has been authored by UT-Battelle, LLC,
under contract DE-AC05-00OR22725 with the US Department of

 Figure 8: Negotiation between LightAgent and MonitorAglet

Energy. The United States Government retains and the publisher,
by accepting the article for publication, acknowledges that the
United States Government retains a non-exclusive, paid-up, ir-
revocable, world-wide license to publish or reproduce the pub-
lished form of this manuscript, or allow others to do so, for United
States Government purposes.

8. REFERENCES
[1] Bierman E., Cloete E., 2002. Classification of Malicious

Host Threats in Mobile Agent Computing. In Proceedings of
SAICSIT, 141-148

[2] Claessens J., Preneel B., Vandewalle J. (How) Can Mobile
Agents Do Secure Electronic Transactions on Untrusted
Hosts? A Survey of the Security Issues and the Current
Solutions. In ACM Transactions on Internet Technology,
(Vol. 3 No. 1, 2003), 28-48

[3] Diffie W., Hellman M. E. New Directions in Cryptography
In IEEE Transactions on Information Theory, (vol. IT-22,
1976), 644-654

[4] DSniff Networking Tools. (n.d). Retrieved December 28th
2006, from http://monkey.org/~dugsong/dsniff/

[5] Esparza O., Fernandez M., Soriano M. Protecting mobile
agents by using traceability techniques. In IEEE (© 2003)

[6] Greenberg M. S., Byington J. C., Holding, T., Harper D. G.
Mobile Agents and Security. In IEEE Communications
Magazine (1998)

[7] Gunter K., Lange D. B., Oshima M. A Security Model for
Aglets. In IEEE Internet Computing (Vol.1, No. 4, 1997),
68-77

[8] Hickman K. E. B. Secure Socket Library. Netscape
Communications Corp., Internet Draft RFC (1995)

[9] JCE Internet Reference Guide. (n.d). Retrieved December 5th
2006, from
http://java.sun.com/javase/6/docs/technotes/guides/security/c
rypto/CryptoSpec.html

[10] Jiao Y., Hurson A. R. Performance Analysis of Mobile
Agents in Mobile Distributed Information Retrieval Systems
– A Quantitative Case Study. In Journal of Interconnection
Networks, (2004) 351-372

[11] Jiao Y., Hurson A. R. Modeling and Performance Evaluation
of Agent and Client/Server-Based Information Retrieval
Systems - A Case Study. In Proceedings of Communication
Networks and Distributed Systems Modeling and Simulation
Conference, (2004), 1-6

[12] Jiao, Y., Hurson, A.R. Application of mobile agents in
mobile data access systems: A prototype. In Journal of
Database Management, (2004) 1-24

[13] JSSE Internet Reference Guide. (n.d). Retrieved December
5th 2006, from
http://java.sun.com/javase/6/docs/technotes/guides/security/js
se/JSSERefGuide.html

[14] Kiniry J., Zimmerman D., 1997. A Hands-On Look At Java
Mobile Agents. In IEEE Internet Computing, (1997) 21-30

[15] Lange D., Aridor Y., Agent Transfer Protocol, IBM Tokyo
Research Laboratory
http://www.trl.ibm.com/aglets/atp/atp.htm

[16] Lange D. B, Oshima M. Mobile Agents with JAVA: The
Aglet API. In World Wide Web 1, (1998) 111-121

[17] Lange D. B., Oshima M. Programming and deploying Java
mobile agents with Aglets. Addison-Wesley, 1998.

[18] Ono K., Tai H. A security scheme for Aglets. In Software –
Practice and Experience (2002)

[19] RMI White Paper. (n.d) Retrieved November 29th 2006, from
http://java.sun.com/javase/technologies/core/basic/rmi/white
paper/index.jsp

[20] Tschudin C. F., 1999. Mobile Agent Security. In Intelligent
Information Agents: Agent-Based Information Discovery and
Management on the Internet, M. Klusch, Ed., Springer-
Verlagu, New York, Chapter 18, 431–446.

