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ABSTRACT 
Despite the fact that mobile agents have received increasing 
attention in various research efforts, the use of the paradigm in 
practical applications has yet to fully emerge. With the presence 
of infrastructure to support the development of mobile agent 
applications, security concerns act as the primary deterrent against 
such trends. Numerous studies have been conducted to address the 
security issues of mobile agents with a strong focus on the 
theoretical aspect of the problem. This work attempts to bridge the 
gap from theory to practice by analyzing the security mechanisms 
available in Aglet. We herein propose several mechanisms, 
stemming from theoretical advancements, intended to protect both 
agents and hosts in order to foster the development of business 
applications that fully exploit the benefits of agent technology. 
The proposed mechanisms lay the foundation for implementation 
of application specific protocols dotted with access control, 
secured communication and ability to detect tampering of agent 
data. We demonstrate our contribution through application 
scenarios of a prototyped Information Retrieval system. 

Categories and Subject Descriptors 
C.2.3 [Communication Network]: Network Operations, 
Network Monitoring, Network Management 
D.4.6 [Operating Systems]: Security and Protection, Access 
Controls, Authentication 
H.2.0 [Database Management]: Security, Integrity and 
Protection 
General Terms 
Security, Economics, Reliability, Experimentation, Management 

Keywords  
SAS, Aglet, MAMDAS 
1. INTRODUCTION 
Mobile Agents refers to a programming paradigm focused around 
the ability for a program to halt its execution, move to a new 
environment where execution can then be resumed. Even with the 
development of numerous mobile agent platforms, the use of 

mobile agents have not transcended from theoretical to practical 
applications. During recent years, research advances have led to 
the introduction of a Mobile Agent-based Mobile Data Access 
Systems (MAMDAS) [10, 11, 12], to facilitate the use of mobile 
agents in applications requiring database access as agents travel 
between hosts. The system has been prototyped using the Aglet 
mobile agent platform. The Aglet platform is fairly documented, 
easy to install, has received great press coverage and is currently 
maintained by the open-source community [14]. With the 
introduction of an infrastructure such as MAMDAS supporting 
the platform, aggressive development of mobile agent applications 
on the Aglet platform should be imminent. Unfortunately, such is 
not the case as the paradigm is plagued with numerous security 
issues. The security threats facing mobile agents, including 
Aglets, have been studied in depth and categorized into host-to-
agent and agent-to-host [6]. Solutions to such threats have to this 
point only been introduced from a theoretical perspective. 

In our effort to help foster the emergence of mobile agents to 
address practical issues in the business world, we conducted an 
analysis of the security options available in the Aglet platform. 
Our work resulted in the development of a Secured Aglet Server 
(SAS) providing: 

1. Secured communication 
2. Controlled resource consumption of agents 
3. Integrity and reliability of agent’s data 

In discussing our findings we start out by introducing the 
necessary background in section 2. Section 3 analyzes the 
vulnerabilities of the current Aglet server. We introduce SAS in 
section 4. Section 5 presents an information retrieval prototype 
designed on top of MAMDAS to demonstrate the contribution of 
our work. We conclude our discussion in section 6 highlighting 
our future work.  

2. BACKGROUND 
Mobile agents lend themselves nicely to searches and computation 
that requires parallel processing and network roaming. The 
mobility of mobile agents may depend on predetermined itinerary 
or intermediate computation results. Along with flexibility in 
system design, agent mobility also introduces security concerns. 
The categorization of the threats plaguing mobile agents is done 
based on the origination of the attack; as such we have agent-to-
host, as well as host-to-agent attacks. Such security issues in 
mobile agents have been studied and some of the proposed 
solutions include but are not limited to the following:  

1. Code signing, access control, proof carrying code and path 
histories to protect the hosts [6, 5, 18, 20]. 
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2. Tracing, obfuscation, trusted hardware as well as encrypted 
functions and data to protect the mobile agents [6, 5, 1, 20] 

Research in mobile agent security is still an open field, and many 
of these approaches remain theoretical. Our goal is to design and 
implement a secure agent platform based on the Aglet workbench, 
which incorporates existing theoretical solutions and provides a 
foundation for secure application development. 

3. VULNERABILITY ANALYSIS OF IBM 
AGLET 

In presenting our finding as we conducted a vulnerability analysis 
of the Aglet platform, we will start with a brief overview of the 
environment in section 3.1. The remaining subsections will 
showcase the vulnerabilities that we have identified in the 
platform. 

3.1 IBM Aglet Architecture 
Aglet is a library written in Java, released by IBM to support the 
development of mobile code. The execution environment within 
which Aglets are executed is referred to as the Aglet’s Context 
and is responsible for enforcing the security restrictions of the 

mobile code.  Aglets run on the Tahiti Server and may adopt 
seven different states (as illustrated in Figure1) during their life 
cycle [16, 17]: 

• Activated: Aglets are loaded from storage and allowed to 
resume execution. 
• Deactivated: Aglet’s execution is halted and its state is saved. 
• Cloned: Aglet is copied for concurrent execution. 
• Disposed: Execution of the aglet ceases permanently 
• Created: Aglet is initialized for execution  
• Dispatched: Aglet is sent to another execution context. 
• Retracted: Aglet is obtained from another execution context. 

The Aglet architecture consists of two main layers which are the 
Runtime Layer running on top of the Communication Layer. The 
tight coordination between these two layers provides Aglets with 
their execution environment. The Runtime Layer manages Aglets’ 
bytecode, and enforces the security restrictions in effect in the 
environment. The Communication Layer, on the other hand, 
provides the basic mechanisms to allow Aglet’s mobility and 
message passing through support of Agent Transfer Protocol 
(ATP) [15] and RMI [19].  

3.2 Communication Vulnerability 
Of primordial importance to any agent systems is the ability to 
allow agents to communicate and roam the network. It is therefore 

imperative that such communication and mobility be performed in 
a secure manner. As mobile agents, Aglets suffer from the same 
security vulnerabilities that plague the programming paradigm. 
The interception of Aglets as they move from one host to another 
is a serious threat encompassed by the need to protect agents from 
malicious hosts. Protecting Aglets against malicious hosts entails 
ensuring that the agents and their messages are sent exclusively to 
the intended entities (hosts or agents). In fact, we believe that no 
mobile agent system can allege to protect agents from malicious 
hosts if it cannot verify the identities of the hosts in the system. 

Presently, the Tahiti server supports authentication of the entities 
that wish to establish communication, typically the authentication 
of servers. The communicating parties in Tahiti are authenticated 
using a Challenge-Response scheme based on the Diffie-Hellman 
algorithm [3], a cryptographic protocol, which allows two parties 
to exchange a secret key over an insecure medium without any 
prior secrets. The authentication of the entities is done in phases 
once one party has initiated the cycle, and is based on security 
domains defined as a region with homogeneous level of security 
[18]. 

In our attempt to determine the efficiency of Tahiti in protecting 
the communication channels used by Aglets, we established a link 
between two instances of the server running on different 
machines. Our goal is to try and intercept the packets being 
exchanged between the two servers, as the interception of such 
packets can easily lead to the reconstruction of the Aglet or 
message being transmitted. We used a third machine and the 
readily available Dsniff software [4] to try and intercept the 
packets between the two servers and display the information being 
captured. Figure 2 displays some of the packets captured by the 
attacker, containing the Aglet in its serialized state as it is being 
transmitted over the unsecured communication channel. Pertinent 
information in Figure 2 is highlighted in red, such as the AgletID 
of the agent, and part of the Aglet’s data. It is not surprising to us 
that we were able to easily carry such an attack being that Tahiti 
does not use any encryption during communication. The 
authentication scheme described earlier is used only to verify the 

Figure 1: Aglet Lifecycle 

 
Figure 2: Captured Packets 



identity of the servers but not as a prelude to a key exchange that 
would be used to encrypt future communication. The 
authentication scheme was designed to prevent security attacks, 
such as the reflection attack, against the communication layer of 
Tahiti.  

Our experiment shows that the authentication scheme is still 
susceptible to more complex attacks such as man-in-the-middle 
(MITM) attacks carried out through eavesdropping on a 
communication channel with the ability to modify or insert data 
into the channel. It also exposes a great weakness in Tahiti in that 
Aglets can be easily intercepted while traveling on the insecure 
communication channels and be made to execute on a malicious 
host. Our first experiment has thus led us to conclude that the 
Aglet framework cannot currently satisfy the requirement of 
agents to migrate exclusively to intended hosts. Hence there is an 
obvious need to address such a shortcoming of the framework in 
order to increase its use in commercial applications. 

3.3 Data Vulnerability 
Protecting mobile agents against malicious hosts must occur on 
two different levels. Agents must first be able to freely roam the 
network and travel only to intended hosts (see section 3.2); 
moreover, agents must be able to freely execute on the hosts onto 
which they have migrated. To this day, there exists no highly 
acclaimed solution to the problem of protecting an agent from a 
malicious host, although numerous proposals have been submitted 
to address the issue of identifying malicious hosts [5, 1]. When an 
Aglet arrives at a host to perform a computation, it is at the 
complete mercy of the host in question. Hosts are capable of 
manipulating the Aglet’s data collected from previous hosts [7]. 
The danger here is that if we consider the case where an Aglet is 
to collect ticket prices from different Airlines, one of the Airlines 
might raise the price of all other Airlines and thus force the user to 
purchase the ticket from its company even though it may not have 
the best price available. Tahiti presently has no mechanisms in 
place to help detect tampering of an Aglet’s data from a malicious 
host nor does it provide any mechanism to help identify the 
existence of such hosts. It is thus imperative that such issue be 
addressed to foster the use of agent in privacy-aware applications. 

3.4 Resource Vulnerability 
The ability for hosts to support the execution of potentially 
malicious agents has been well discussed in the literature within 
the scope of mobile agents in general [6, 20, 1, 2]. Aglets suffer 
from the same limitations in that malicious Aglets could be 
detrimental to the proper functioning of a host. Being that Aglets 
are built on top of Java technology, the Tahiti server makes 
adequate use of the Java sandboxing techniques to protect hosts. 
Aglets execute within a runtime environment, which controls their 
access to system resources such as files and devices. Aglets are 
allowed to execute a set of actions on themselves that allows them 
to move from one execution state to another during the Aglets 
lifecycle.  

During the course of our investigation, we have identified an 
inherent vulnerability of host resources stemming from the normal 
lifecycle of Aglets. To illustrate our novel observation, we 
implemented an Aglet application whose purpose is to attempt to 
consume as much resources as possible on a host through traversal 
of the Aglet’s normal lifecycle stages. To ascertain the effect of 
such a behavior from an Aglet, we considered the best-case 
scenario in which the clones of the Aglet do not carry out any 

computation, nor does the Aglet itself carry any computationally 
expensive operations. The developed Aglet application was 
instantiated from a Tahiti server running on a 1.0Ghz G4 
processor with 1.0GB of memory. The application that we 
developed carried out the attacks on the host through repeated 
cloning, as well as by creating and dispatching new Aglets to a 
target host. The attack was successfully carried as well through 
the activation or retraction of Aglets. Figure 3 depicts the amount 
of memory used by the server based on the number of active 
Aglets. The running instances of the Aglets have a dramatic effect 
on the amount of memory being used by the Tahiti server. On 
average, with approximately 7000 instances of the Aglet 
application, the server reports a java.lang.OutOfMemoryError and 
is then unable to process any more requests including the creation 
of new Aglets. 

Our research has successfully identified and exposed the resource 
vulnerability of Tahiti that can be easily exploited by a malicious 

Aglet or even by an Aglet that has been improperly designed. The 
erroneous introduction of an infinite loop (or even a loop with a 
large number of repetitions) around a statement that would cause 
the Aglet to clone itself, or create an instance of another aglet 
could lead to disastrous effects on the resource utilization of a 
host. The lack of infrastructure to protect hosts is as detrimental to 
the adoption of the paradigm as is the threats faced by the agents 
and ought to be tackled to increase adoption of the paradigm.  

4. SECURE AGLET SERVER (SAS) 
In order to address the security vulnerabilities discussed in 
section3, we designed and implemented a Secured Aglet Server 
(SAS). SAS’ look and feel closely resembles that of Tahiti, its 
architecture is a replica of Tahiti’s architecture with some added 
functionalities to support the new security mechanisms.  

4.1 Secure Communication 
As was shown earlier, the Communication Layer of Aglets makes 
use of unsecured protocol, thus leaving the framework open to a 
range of attacks, which we intend to address in our research. The 
current industry standard in addressing communication security 
being SSL [8], keeping in line with our intent of fostering the 

 
Figure 3: Effect of DoS Attack on Host’s Memory 



adoption of agents in commercial applications, we opted to 
implement SSL in the Tahiti server, using the Java Secure Socket 

Extension (JSSE) [13]. JSSE provides a standard Application 
Programming Interface (API) allowing for the creation of secure 
connection between hosts with the option of having both parties 
authenticated (see Figure 4). The sockets created by the JSSE API 
are protocol-independent and thus needs to be configured to work 
with the protocols used by the Aglets framework. 

The implementation of the SSL sockets created by JSSE into SAS 
occurred at the Communication Layer with the introduction of a 
sub-layer (SSL Layer) below the protocols. The sub-layer handles 
the creation and management of the secure sockets for use by the 
different protocols. Our implementation of the sub-layer provides 
administrators with the mechanisms necessary to implement 
application-specific protocols. As such, administrators can 
customize the server to accept connections from clients, which do 
not support SSL or to reject such connections. Allowing for an 
administrator to request that unauthenticated clients be denied 
connectivity to the server is justified by the observation that 
communication in the Aglet framework occurs only between 
servers; hence it is reasonable to expect each server to possess a 
signed certificate. The Cipher suites to be used on the server’s 
connections can also be specified; hence servers can enforce 
different encryption strength on their communication channels all 
within the boundaries of SSL. Through the use of SSL sockets in 
our implementation, we have endowed the Aglet framework with 
the ability to communicate over secure channels capable of 
authenticating the parties involved, refusing unsecured 
connections and adjusting the security level on the channels. 
Through the availability of SSL in SAS, administrators will gain 
control of the level of security enforced on network links; most 
importantly, it provides a standard solution trusted in the industry 
to handle secure communication.  

 
Figure 4: SAS Security Preference Window 

 
Figure 5: Signed Message Digest printout 



 
Figure 6: Detection of Instance Violation by MonitorAglet 

4.2 Secure Data  
While the scenario discussed in section 3.3 cannot be currently 
prevented, it is necessary for an Aglet to have a way of 
determining whether the information that it has collected over 
numerous hosts has been tampered with. Granting Aglets the 
ability to detect tampering with their data required that we 
extended the functionalities of the server. The Runtime Layer of 
SAS is extended to support the creation of Message Digests using 
the Java Cryptography Extension (JCE) [9] as well as the ability 
to digitally sign objects. We provide Aglets with a java class 
library that implements the concept of Read-Only data. The class 
library allows agents to save data but can only read the data set in 
question once it has been submitted to the class library. The 
library makes use of the extension of SAS to compute and store 
message digests of each datum as it is submitted to the library (see 
Figure 5). With the new functionalities of SAS in place, the 
library obtains a signed copy of the message digest computed by 
the host along with the host’s certificate. An Aglet can retrieve the 
message digests stored by the library and use the corresponding 
certificate to ensure that its data has not been tampered with. The 
introduction of computed message digests and digital signatures in 
the Runtime Layer of SAS provides Aglets with the capability of 
detecting active malicious hosts in the agent’s itinerary. 

4.3 Secure Resources 
Dealing with the possibility of an Aglet overusing the resources of 
a host as it traverses its normal lifecycle, requires the design of a 
scheme to not only specify and track the resources in use by an 
Aglet but also to take proper actions once an Aglet attempts to 

overuse the host’s resources. The design of such a scheme led us 
to the introduction of a MonitorAglet in SAS. The MonitorAglet 
is responsible for tracking the resources, in terms of instances, in 
use by an Aglet to ensure that the specified limit is never 
exceeded. The MonitorAglet makes use of a Resource data 
structure to track the number of instances of a particular Aglet that 
are present in the system. The data structure is built based on the 
properties of Aglets such as their IDs. As such, if the Resource 
data structure manages class names of the form “Attacks.*”; any 
Aglet whose name starts with “Attacks” would belong to the 
structure. 

Within the scope of SAS, we define instances as the instantiation 
of an Aglet or Message object. Furthermore, an Aglet B is an 
instance of an Aglet A if and only if one of the following is true 

1. B belongs to the same Resource object as A  
2. A created, retracted or activated B. 
3. B is a clone of A. 

Managing the number of instances of an Aglet that are present in 
the system is then reduced to keeping track of the number of 
instances of an Aglet a particular Resource has. Each Resource 
object contains a maximum number of instances to allow in the 
system; once that limit has been reached, the MonitorAglet 
prevents the creation, activation or retraction of any other 
instances of the Aglets in the Resource until one of the instances 
of the Resource has been deactivated, dispatched or disposed of 
(see Figure 6). An identical scheme is used to control the number 
of messages an Aglet can delegate in the system. 



A notable feature provided by the MonitorAglet is the ability for a 
remote Aglet to contact the Monitor and determine the Resources 
and Permissions that it should expect to have available if it were 
to migrate to the host where the Monitor Aglet is executing. This 
allows Aglets to decide whether they should move to a host 
depending upon their requirements.  

As we attempt to protect hosts against malicious agents, we have 
introduced powerful capabilities to the Aglet framework. It is now 
possible to limit the number of instances of an Aglet executing on 
a host, thereby preventing the attack described earlier. Moreover, 
Aglets are now able to determine in advance whether they should 
migrate to a host based on the resources and access restrictions in 
place in the host of interest 

5. PRIVACY-PRESERVING 
INFORMATION RETRIEVER (PIR) – A 
CASE STUDY 

As part of our research, we have prototyped a Privacy-preserving 
Information Retriever (PIR) to highlight the contributions of the 
proposed work. The PIR prototype (see Figure 7) is based on 
MAMDAS, a multidatabase access system tailored to support user 
mobility. We envision the use of the PIR to help companies make 

a hiring decision about an individual. Government agencies along 
with private corporations maintain pertinent data that are, for the 
most part, readily available to the public. Arrest records, credit 
report as well as past salaries represent some of the information 
that may come into play in hiring a potential employee. The PIR 
has its own set of security requirements. As we explore such 
requirements, we will demonstrate the mechanisms available in 
SAS to provide the required level of security. 

Being built on top of MAMDAS, PIR makes heavy use of agents 
to collect the information of interest. Notably, PIR uses an Aglet, 
DataSearchWorker (DSW), to roam a hierarchical network 
structure that reflects the semantic relationship of the datasets. 
Due to the potential sensitivity of the data collected by the DSW, 
it is imperative that the Aglet only travels to hosts of interest to 
the task at hand to ensure reliability of the data. As we have 
shown earlier, third parties can intercept agents in Tahiti, thereby 
compromising the security of PIR. On the other hand, through the 
use of SSL, SAS provides applications with the necessary 
mechanisms to ensure that delegated agents only travel to 
intended hosts. The prototyped PIR makes use of the available 
mechanism to attain the communication security needed to 
prevent access to pertinent data through authentication of the 
entities in the network. 

 
Figure 7: PIR Screenshot with Data Integrity Check 



To collect the required data, the DSW will visit various hosts. The 
hosts visited may be past employers of the hiring candidate, and 
thus may benefit from sabotaging the candidate. If the candidate’s 
records are altered, such as through insertion of arrests records or 
increase of past salaries, the collected data cannot be used to make 
a reliable decision. PIR requires that the integrity of the collected 
data be maintained as it will be used in a manner that will affect 
the future of the company. While Tahiti does not provide any 
support to applications with similar requirements, SAS provides 
the basic functionalities to allow detection of data tampering. The 
PrivateData library, discussed earlier, allows applications to profit 
from such functionalities. Through the use of the library, PIR 
allows users to verify the integrity of the result, as the DSW 
requires hosts to sign any collected data. If any of the collected 
data has been corrupted, PIR can notify the user, should the latter 
decide to go through with the verification step (see Figure 7). 

Aside from communication and data security, equally important to 
PIR is the issue of ensuring that the resources of hosts are not 
consumed in vain. Malicious agents, through lifecycle operations, 
may subject hosts to DoS attacks; such occurrence would prevent 
PIR agents from accomplishing their goals and collect the 
information of interest. Within PIR, multiple agents may need 
access to the same host, as some personal information, such as 
credit reports or criminal records are on a limited set of hosts. 
Similar to any application, data availability is of primordial 
importance in our prototyped PIR. The existence of the system 
would be futile if it could not collect the criminal records of a 
potential employee. Tahiti, as we have discussed, can be subjected 
to such DoS attacks as it strays away from the micro-management 
of Aglets. SAS addresses the issue through the introduction of a 
MonitorAglet to track the actions of agents in the system. The 
MonitorAglet ensures the availability of DSW’s hosts of interests 
by limiting the number of instances of agents. 

The heterogeneity with which the PIR prototype operates yields 
an underlying issue. The set of operations that the DSW can 
perform will vary from one host to another. This results in the 

possibility for the DSW to be dispatched to a host with relevant 
information only to be denied the right to execute on such hosts. 
The occurrence of the depicted scenario leads to inefficient use of 
network resources. While such a case is not in and of itself a 
security threat, MonitorAglet provides PIR with support to reduce 
such occurrences. The DSW agent in PIR ensures that it will be 
allowed to execute its code to completion before migrating to a 
host. This is accomplished by dispatching a surrogate agent 
(LightAgent) to the destination host. LightAgent contacts the 
MonitorAglet of the destination host and determines whether or 
not the host will support execution of the DSW (see Figure 8). As 
such DSWs can decide to migrate to a host based on whether or 
not they will have access to the required resources. The issue is 
highly important since agents may need to execute different 
portions of their code to cope with heterogeneity of the sources, 
such as the manner in which to access a database. This is 
evidenced by the possible need to use a package such as 
sun.jdbc.odbc to acquire the necessary data. Within our prototype, 
such scenario is modeled by the need for DSWs to access flat file 
databases. Under such a condition, PIR can dispatch the surrogate 
agent to determine whether the DSW will have the necessary 
permission to access the database of interest. 

The PIR prototype has been achieved in SAS due to the fact that 
SAS provides the basic functionalities required to sustain a secure 
system. Figure 4 shows the prototype running on the SAS server. 
PIR allows users to specify the global term to use in the search 
along with the semantic specifications. Once the results are 
collected, the user can choose to verify their integrity. SAS 
allowed the agents in the prototyped PIR to travel only to intended 
hosts through authentication. Moreover, the integrity of the 
collected data can be verified through the use of the PrivateData 
library. Lastly, through the MonitorAglet, SAS provides data 
availability to the prototype along with the ability for PIR agents 
to not migrate to a host that will not support their full execution.  

6. CONCLUSION 
We have herein addressed the security issues present in the Aglet 
framework through the introduction of SAS The implemented 
mechanisms in SAS are intended to help foster the emergence of 
mobile agents in commercial applications. We have addressed 
both aspects of Aglets security from a practical standpoint. SAS 
provides secured communication channel, detection of data 
tampering and controlled number of instances of agents on the 
server. Moreover, agents in SAS may determine expected 
resources from future hosts. Through the PIR prototype, we have 
demonstrated how the proposed mechanisms can be used to foster 
secure development of agent applications.  

Presently, Aglets can detect the tampering of their data; however, 
protecting the privacy of the agent’s data remains an issue. SAS 
can allow hosts to starve non-malicious agents, and such a case 
should be addressed in future work. Moreover, hosts with limited 
power are still at risk against gratuitous exploitation of CPU 
cycles. Further efforts to secure the framework should focus on 
the aforementioned issues. 
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