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Abstract. The Flocking model, first proposed by Craig Reynolds, is one of the 
first bio-inspired computational collective behavior models that has many 
popular applications, such as animation. Our early research has resulted in a 
flock clustering algorithm that can achieve better performance than the K-
means or the Ant clustering algorithms for data clustering. This algorithm 
generates a clustering of a given set of data through the embedding of the high-
dimensional data items on a two-dimensional grid for efficient clustering result 
retrieval and visualization. In this paper, we propose a bio-inspired clustering 
model, the Multiple Species Flocking clustering model (MSF), and present a 
distributed multi-agent MSF approach for document clustering.  
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1   Introduction 

Currently, more and more digital document data is being generated as part of the 
ubiquitous and pervasive use of computing systems, information systems, and sensor 
systems. It is a challenge to efficiently and effectively analyze this data. Clustering 
analysis is a descriptive data mining task, which involves dividing a set of objects into a 
number of clusters. The motivation behind clustering a set of data is to find inherent 
structure inside the data and expose this structure as a set of groups [1]. The data objects 
within each group should exhibit a large degree of similarity while the similarity among 
different clusters needs be minimal [9]. Document clustering is a fundamental operation 
used in unsupervised document organization, automatic topic extraction and information 
retrieval. It provides a structure for organizing a large body of text for efficient browsing 
and searching. There are two major clustering techniques: partitioning and hierarchical 
[9]. Many document clustering algorithms can be classified into these two groups. In 
recent years, it has been recognized that the partitioning techniques are well suited for 
clustering a large document dataset due to their relatively low computational 
requirements [18]. The best-known partitioning algorithm is the K-means algorithm and 
its variants [17]. This algorithm is simple, straightforward and based on the firm 
foundation of analysis of variances. One drawback of the K-means algorithm is that the 
clustering result is sensitive to the selection of the initial cluster centroids and may 
converge to the local optima, instead of the global one. The other limitation of the K-
means algorithm is that it generally requires a prior knowledge of the probable number 
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of clusters for a document collection. Therefore, there is a demand for more efficient 
algorithms for document clustering. 

New algorithms based on biological models, such as ant colonies, bird flocks, and 
swarm of bees etc., have been invented to solve problems in the field of computer 
science. These algorithms are characterized by the interaction of a large number of 
agents that follow the same rules and exhibit complex, emergent behavior that is 
robust with respect to the failure of individual agents. The Flocking model is one of 
the first collective behavior models that have been applied in popular applications, 
such as animation. In addition to being used to simulate group motion, which has been 
used in a number of movies and games, The Flocking model has already inspired 
researches in time varying data visualization [12, 20] and spatial cluster retrieval [6, 
7]. In this paper, we propose a bio-inspired clustering model, the Multiple Species 
Flocking clustering model (MSF), and present a distributed multiple agent MSF 
approach for dynamic updated text clustering.  

The remainder of this paper is organized as follows: Section 2 provides a general 
overview of the basic Flocking model. A new multiple species flocking (MSF) model 
is proposed and a MSF model clustering algorithm is described in section 3. In section 
4, a Multi-Agent Scheme for Distributed Dynamic Document Clustering is presented. 
Section 5 provides detailed experimental design, setup and results in comparing the 
performance of the multi-agent implementation for clustering the dynamic updated 
document collection on the cluster computer and a single processor computer. Section 
6 describes the related works in the traditional and bio-inspired document clustering 
area. The conclusion is in Section 7 

2   Modeling of Flocking Behavior 

Social animals or insects in nature often exhibit a form of emergent collective 
behavior known as ‘flocking’. The Flocking model is a bio-inspired computational 
model for simulating the animation of a flock of entities. It represents group 
movement as seen in the bird flocks and the fish schools in nature. In this model, each 
individual makes its movement decisions on its own according to a small number of 
simple rules that it reacts to its neighboring members in the flock and the environment 
it senses. These simple local rules of each individual generate a complex global 
behavior of the entire flock. The basic Flocking model was first proposed by Craig 
Reynolds [14], in which he called each individual as “boid”. This model consists of 
three simple steering rules that each boid need to execute at each instance over time: 
(1) Separation: Steering to avoid collision with other boids nearby; (2) Alignment: 
Steering toward the average heading and match the velocity of the neighbor flock 
mates (3) Cohesion: Steering to the average position of the neighbor flock mates. 

As shown in Figure 1, in the circled area of Figure 1(a), 1(b) and 1(c), the boid’s 
(located in the center of the small circle with grey background) behavior shows how a 
boid reacts to other boids’ movement in its local neighborhood. The degree of locality 
is determined by the range of the boid’s sensor (The semi-diameter of the big circle). 
The boid does not react to the flock mates outside its sensor range because a boid 
steers its movement based only on local information. These rules of Reynolds’s boid 
flocking behavior are sufficient to reproduce natural group behaviors on the computer.  
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(a) Alignment                                    (b) Separation                           (c) Cohesion 

Fig. 1. The three basic rules in the boid 

3   The Multiple Species Flocking (MSF) Model 

Our early experiments [3] indicate these three rules in Reynolds’s flocking model will 
eventually result in all boids in the simulation forming a single flock. It can not 
reproduce the real phenomena in the nature: the birds or other herd animals not only 
keep themselves within a flock that is composed of the same species or the same 
colony creatures, but also keep two or multiple different species or colony flocks 
separated. To simulate this nature phenomenon, we propose a new Multiple Species 
Flocking (MSF) model to model the multiple species bird flock behaviors. In the MSF 
model, in addition to these three basic action rules in the Flocking model, a fourth 
rule, the feature similarity rule, is added into the basic action rules of each boids to 
influence the motion of the boids. Based on this rule, the flock boid tries to stay close 
to these boids that have similar features and stay away from other boids that have 
dissimilar features. The strength of the attracting force for similar boids and the 
repulsion force for dissimilar boids is inversely proportional to the distance between 
the boids and the similarity value between the boids’ features.  

In the MSF model, we use the following mathematical equations to illustrate these 
four action rules for each boid: 
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where var , vsr , vcr and vds are velocities driven by the four action rules, ),( bx PPd  is the 

distance between boid B and its neighbor X, n is the total number of the boid B’s local 
neighbors,  vb and vx is the velocity of boid B and X, d1 and d2 are pre-defined 

distance values and 21 dd , 
bx PP − calculates a directional vector point. S(B,X) is the 

similarity value between the features of boid B and X. T is the threshold for 
separating similarity and dissimilarity boids.  

 
(a) 

 
(b) 

Fig. 2. Multiple species bird flocking simulation 

To achieve comprehensive flocking behavior, the actions of all four rules are 
weighted and summed to give a net velocity vector demanded for the active flock 
boid.  

dsdscrcrararsrsr vwvwvwvwv .... +++=  . (5) 

where v is the boid’s velocity in the virtual space and dddscrarsr wwwww ,,,, are pre-

defined weight values.  
Figure 2 shows the result of our multiple species bird flock simulation by using 

multiple agents system in which the MSF model is implemented in each simulation 
agent. In this simulation, there are four different boid species and each species have 
200 boids. We use four different colors, green, red, blue and black, to represent 
different species. All together, 800 boids are simulated in the environment. At the 
initial stage, each boid is randomly deployed in the environment as shown in Figure 
2(a). Each color dot represents one boid agent. There is no central controller in the 
simulation. Each boid agent can only sense other boids within a limited range and 
move in the simulation environment by following these four action rules of the MSF 
model. Although there is no intention for each boid to form a same species group and 
to separate different species from each other, after several iterations, as shown in 
Figure 2(b), the boids in the same species (shown as in same color) are grouped 
together and different species are separated. This phenomenon represents an emergent 
clustering behavior. 
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4   The MSF Clustering Algorithm 

The MSF model could offer a new way to cluster datasets. We applied the MSF model 
to developing a document collection clustering algorithm called MSF Clustering 
algorithm. The MSF clustering algorithm uses a simple and heuristic way to cluster 
input data, and at the same time, maps the data to a two-dimensional (2D) surface for 
easy retrieval and visualization of the clustering result, processing both tasks 
simultaneously. In the MSF clustering algorithm, we assume each document vector is 
projected as a boid in a 2D virtual space. Each document vector is represented as a 
feature of the boid. Following the simple rules in MSF model, each boid determines its 
movement by itself in the virtual space. Similar to the bird in the real world, the boids 
that share similar document vector features (same as the bird’s species and colony in 
nature) will automatically group together and became a boid flock. Other boids that 
have different document vector features will stay away from this flock. In this 
algorithm, the behavior (velocity) of each boid is only influenced by the nearby boids. 
The boid’s four MSF action rules react to this influence and generate the boid’s new 
moving velocity. Although this influence on each bird is locally, the impacts on the 
entire boid group is global. After several iterations, the simple local rules followed by 
each boid results in generating a complex global behavior of the entire document flock, 
and eventually a document clustering result is emerged.  

We evaluated the efficiency of the MSF algorithm and the K-means algorithm on 
document collection that includes 112 recent news articles collected from the Google 
news. This news article collection has been categorized by human and manually 
clustered into 11 categories. For the purpose of comparing, the Ant document 
clustering [8] and the K-means clustering algorithms were implemented by Java 
language and applied to the same real document collection dataset, respectively. The 
K-means algorithm implementation was given the exact clustering result number as the 
prior knowledge. Our early research [3] shows that the Ant clustering algorithm can 
not come out any useful result if the algorithm only given a limited number of iteration 
(300 iterations) for refining the result. In this experiment, each algorithm was given 
100 fixed iterations to refine the clustering result and only the MSF clustering 
algorithm and K-means algorithm can generate reasonable results. As shown in Figure 
2(b), the clustering results generated by the MSF clustering algorithm can be easily 
recognized by human eyes because of their visual characteristic. In our experiments, 
the clustering result of the MSF clustering algorithm is retrieved by human looking at 
the visual flock picture that generated by the virtual boids on the screen. We compared 
the average results of these two algorithms from ten separate experiments. The results 
of the clustering algorithm were evaluated by comparing it with the prior knowledge of 
the classification of the document collection. The F-measure was used as the quality 
measure. The results are listed in Table 1. The results indicate that the flocking 
algorithm achieves better result compared to the K-means for document clustering 
although the K-means algorithm has prior knowledge of the exact cluster number.  

Table 1. Performance results of the K-means and MSF clustering algorithms 

Algorithms Average cluster result number Average F-measure value 
MSF 9.105 0.7913 
K-means (11) 0.5632 
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5   Distributed Agent Implementation of MSF Clustering Algorithm 

The MSF clustering algorithm can achieve better performance in document clustering 
than the K-means and the Ant clustering algorithm. This algorithm can continually 
refine the clustering result and quickly react to the change of individual data. This 
character enables the algorithm suitable for clustering dynamic changed document 
information, such as the text information stream. However, the computational 
requirement for real-time clustering a large amount of text collection is high. In the 
information society of today, tremendous amounts of text information are continuously 
accumulated. Inevitably, the MSF clustering algorithm approach of using single 
processor machine to cluster the dynamic text stream requires a large amount of 
memory and a faster execution CPU. Since the decentralized character of this 
algorithm, a distributed approach is a very natural way to improve the clustering speed 
of this algorithm. In this paper, we present a distributed multi-agent based flocking 
approach for clustering analysis of dynamic documents and balance the computation 
load on cluster nodes.  

5.1   Distributed Agent Scheme for Document Clustering 

In the MSF clustering algorithm, the document parse, similarity measurement and boid 
moving velocity calculation are the most computational consumption parts. The 
distributed implementation can divide these computational tasks into smaller pieces that 
may be scheduled to concurrently run on multiple processors. In order to achieve better 
performance using distributed computing, several issues must be examined carefully 
when designing a distributed solution. First is the load balance. It is important to keep 
load balancing among processing nodes to make sure each node have approximately the 
same workload. The environment state synchronization is the second issue need to be 
considered. It is very important for a distributed implementation to develop a 
synchronization algorithm, which is capable of maintaining causality. Third is reducing 
the communication between nodes, including communication overhead of the 
environment state synchronization and control of message exchange between nodes. 
Based on these requirements, we developed a distributed agent based implementation of 
the MSF clustering algorithm for clustering analysis of the text datasets. In this 
distributed agent based implementation, boids are modeled and implemented in terms of 
agents, which makes boids pro-active, adaptive and communicable. The distributed 
agent based implementation supports distributed load balance in a very natural way. 
Since each boid agent is implemented to perform document retrieval, parse, similarity 
comparison and moving velocity calculation independently, it is straight-forward to 
have different agents run on different machines to achieve a load balance. Since agent 
can be added, removed or moved to other machine without interrupting other agent’s 
running, the system can be scalability and pro-activity to the change of work load.  

One major concern in designing this distributed agent based MSF implementation 
is how to ensure agents be synchronized at any time when they must interact or 
exchange data. In a distributed system, environment information is spread out among 
the processors involved in the system. An agent doesn’t know other agent’s 
information if it is not informed, it has to commute with other agents to collect 
enough information, does an exhaustive search to find out which agents are located 
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within its range, and calculates the force that it is pushed to travel based on it’s 
neighbor agents’ information. All these require that each agent in the system have a 
global view of other agents’ status information. As such, it is necessary to develop a 
communication schemes to update the agent’s information on different processors. 
One easy communication scheme is broadcast. As shown in Figure 3(a), each agent in 
the system broadcast its status information to all other agents wherever they are 
located in the same node or different nodes. Each agent will also use the information 
it received from other agents’ broadcast to find out its neighbor boid mates and 
calculate the next moving velocity. In this scheme, each agent has a global view of the 
entire system status. However, the broadcast will use so much bandwidth that makes 
the network bandwidth in a computer cluster become a bottleneck of the system when 
the agent number increased. In this report, we proposed an environment status sharing 
scheme by using location proxy agent. As shown in Figure 3(b), there is a location 
proxy agent on each node. Each agent will only inform its status to the location proxy 
agent in the same node. The agent also inquires the location proxy agent to find out its 
neighbor mates. At every time step, after collecting the status of all agents that located 
in the same host, location proxy agents will broadcast this information to other proxy 
agents that located on different nodes, which enable the location proxy agent on each 
node to have global view of the whole system.  

 
(a) Broadcast 

 
(b) Location Proxy 

Fig. 3. The architectures of different communication schemes 

5.2   Datasets 

The document dataset used in this study is derived from the TREC-5, TREC-6, and 
TREC-7 collections [10] and represented as a set of vectors X={x1, x2, …., xn}, where 
the vector xi corresponds to a single object and is called “feature vector” that contains 
proper features to represent the object. The feature value is represented using the 
Vector Space Model (VSM) [16]. In this model, the content of a document is 
formalized as a point in a multi-dimensional space and represented by a vector x, such 

as x= },.....,{ 21 nwww , where wi(i = 1,2,…,n) is the term weight of the term ti in one 

document. The term weight value wi represents the significance of this term in a 
document. To calculate the term weight, the occurrence frequency of the term within 
a document and in the entire set of documents needs to be considered. The most 



 A Distributed Agent Implementation of MSF Model 131 

widely used weighting scheme combines the Term Frequency with Inverse Document 
Frequency (TF-IDF) [15]. The TF-IDF weight wij of term i in document j is given in 
following equation: 

)(log*)1(log* 22
ji

jijijiji df

n
tfidftfw +==  . (6) 

Where tfji is the number of occurrences of term i in the document j; dfji indicates the 
term frequency in the document collections; and n is the total number of documents in 
the collection.  

Calculation of the TF-IDF weight value needs the knowledge of word frequency in 
the entire document collection and the total number of documents in the collection. If 
a single document is added or removed from the document collection, the TF-IDF 
scheme will need recalculate the TF-IDF value of all documents processed. It is 
difficult to use the TF-IDF scheme to convert streaming textual information into 
vectors. To address these issues, a modified TF-IDF scheme, Term Frequency / 
Inverse Corpus Frequency (TF-ICF) [13], is adopted to calculate the term weight 
value of each term in the document vector. In TF-ICF scheme, the TF portion is same 
as the TF portion in TF-IDF. The IDF calculation that uses document collection in 
TF-IDF is replaced with information gathered from a large, static corpus of 
documents in TF-ICF. The corpus includes more than 250,000 documents that contain 
almost all of the typically used English words. The weight wij of term i in the 
document j can be calculated by the following TF-ICF equation: 
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where Ci is the number of documents in the corpus C where term i occurs.  
Before translating the document collection into TF-ICF VSM, the very common 

words (e.g. function words: “a”, “the”, “in”, “to”; pronouns: “I”, “he”, “she”, “it”) are 
stripped out completely and different forms of a word are reduced to one canonical 
form by using Porter’s algorithm [11]. 

As we indicated in the previous session, the nature of the MSF clustering algorithm 
enable the algorithm continually refine the clustering results and quickly react to the 
change of the document contents. This character makes the algorithm suitable for 
cluster analyzing dynamic changed document information. In this report, the 
performance of these algorithms on clustering dynamic updated document collections 
is studied. To simulate the dynamic updated document collection, the document 
vector of each agent is periodically updated with a new document vector and the old 
document vector is considered as expired. To easily compare the performance of 
different scenario, in this study, each agent’s document feature will be updated for ten 
times during the entire life of the system execution. In each experiment, the system 
will run 1000 cycles and the average document update gap is 100 time-steps. 

5.3   Multi-agent Platform 

The distributed MSF clustering algorithm is implemented on a (Java Agent 
DEvelopment Framework (JADE) agent platform. JADE is a software framework 
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fully implemented in the Java language and is a FIPA compliant agent platform. As a 
distributed agent plate form, the JADE agent can be split on several hosts. The OS on 
each host is not necessary same. The only required environment is a Java virtual 
machine (JVM). Each JVM is a basic container of agents that provide a complete run 
time environment for agents and allow several agents to concurrently execute on the 
same container, JVM.  

5.4   Experimental Design and Results 

The simulation experiment in this study is to illustrate the performance enhancement 
by comparing the run time of executing the MSF clustering distributed agent 
implementation on a three-node cluster machine and a single processor machine.  

In the MSF clustering distributed agent implementation, each boid is implemented 
as a Jade agent. Each agent has the ability to calculate its moving velocity based on the 
four actions rules as we discussed in the previous session. Each agent carries a feature 
vector representing a document vector. The environment used in the experiment 
consists of a continuous 2D plane, in which boid are placed randomly on a grid within 
a 4000×4000 squire unit area. All experiments were carried out on an experiment 
Linux computer cluster machine. The cluster machine consists of one head node, 
ASER and three cluster nodes, ASER1, ASER2, and ASER3, which are connected 
with a Gigabit Ethernet switch. Each node contains a single 2.4G Intel Pentium IV 
processor and 512M memory. To compare the performance, we utilize a starter agent 
that initiates the boid agent process and measures time. The running times for different 
number of agents is recorded using java’s System.currentTimeMillis() method and the 
unit is milliseconds. 
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Fig. 4. The running time for boid agents deployed in one JADE container and two JADE 
containers 
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JADE allows multiple JADE containers (JVM) running on the same host while 
agents can be deployed in different containers. Our preliminary experiment is to test 
the performance impact when the boid agents running in multiple JADE containers. 
The running time of a different number of boid agents executed in one container or 
two containers are measured and recorded, separately. The experiment result is shown 
in Figure 4. As shown in this figure, the running time for the same amount of agents 
in a single container is much less than that in two containers. The main reason is that 
the communication between agents located in different JADE containers is much 
slower than the communication between agents located in the same JADE container. 
To reduce the communication delay, in the following experiments, all agents located 
in same host are assigned in the same container. At the same time, to reduce the 
impact of the JADE system computational requirement, in all simulation experiments, 
the main JADE system container runs on the head node of the cluster, which is not 
counted in the simulation nodes. Every simulation experiment will be executed for ten 
times. Reported results are the average time over 10 simulation runs of 1000 cycle 
each. The running time does not include the time for starting and finishing agents. It 
only counts the time consumed during boid agents start moving in the 2D space and 
stop moving after 1000 cycles.  

 
(a) 

 

(b) 

Fig. 5. The architecture of the single processor model and the distributed model 
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In the single processor model, all boid agents are executed on one cluster node. In 
the distributed model, the boid agents are equally distributed on three nodes, each 
node has one location proxy agent to collect the agent position and the location proxy 
agent on each node will exchange agent position information at every step. The 
architecture of the single processor model and the distributed model are represented in 
Figure 5(a) and 5(b), respectively. Different numbers of boid agents are tested on both 
simulation and the boid agent’s execution time to finish 1000 circle is recorded. 
Because the distributed model requires three processes to simulate the document 
clustering, the time is the average time consumption for all agents running on 
different node after 1000 cycles. The experiment results are shown in Figure 6. The 
“Three nodes” curve line in Figure 6 indicates the time consumption of the document 
clustering simulation executed on the three nodes cluster machine. The “One node” 
curve line indicates the time consumption of the document clustering simulation 
executed on the single node machine.  
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Fig. 6. The running time for 3 node cluster machine and one single processor machine 

As shown in Figure 6, when the number of agents is 30, there is no significant 
difference on consumption time between the three node cluster machine and the single 
processor machine. When the number of agents is more than 60, it takes the three 
node cluster machine much less time than the single node machine. Before the total 
boid agent number reach 120, the three nodes simulation didn’t cut the total running 
time into one third of the total time of the single node machine because of the 
communication overhead when location proxy agent updating status with other 
location proxy agents located on the other nodes. However, the running time 
consumption on the single node machine increases faster than that on the three node 
machine. Once the total boid agent number researches 120, the time required for 
running on the single node machine is more than three times of that on the three node 
machine. One possible reason is each node having limited memory (512M). In single 
node model, when more than 120 agents running on single node, depending on the 
documents that these agents represent, the memory requirement for the simulation 
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may be larger than the actual memory of the computer node, which cause the 
computer system use the virtual memory (hard disk space) and the time requirement 
for finishing the simulation is largely increased. In the distributed model, the boid 
agents are evenly deployed on three different cluster nodes. Each node only have one 
third of the total boid agents and the memory requirement is related smaller than 
single node model. This will avoid the agent system exceed the node’s physical 
memory limitation. 

6   Related Works 

To deal with the limitations existed in the traditional partition clustering methods, in 
recent years, a number of computer scientists have proposed several approaches 
inspired from biological collective behaviors to solve the clustering problem, such as 
Genetic Algorithm (GA) [2], Particle Swarm Optimization (PSO) [4, 19], Ant 
clustering [8, 22] and Self-Organizing Maps (SOM) [21]. Within these clustering 
algorithms, the Ant clustering algorithm is a partitioning algorithm that does not 
require a prior knowledge of the probable number to clusters or the initial partition. 
The Ant clustering algorithm was inspired by clustering of corpses and eggs observed 
in the real ant colony. Deneubourg et al [5] proposed a “Basic Model” to explain the 
ants’ behavior of piling corpses and eggs. In their study, a population of ant-like 
agents randomly moved in a 2D grid. Each agent only follows one simple rule: 
randomly moving in the grid and establishing a probability of picking up the data 
object it meets if it is free of load or establishing a probability of dropping down the 
data object if it is loading the data object. After several iterations, a clustering result 
emerges from the collective activities of these agents. Wu [22] and Handl [8] 
proposed the use of the Ant clustering algorithms for document clustering and 
declared that the clustering results from their experiments are much better than those 
from the K-means algorithm. However, in the Ant clustering algorithm, clustered data 
objects do not have mobility by themselves. The movements of data objects have to 
be implemented through the movements of a small number of ant agents, which will 
slow down the clustering speed. Since each ant agent, carrying an isolated data object, 
does not communicate with other ant agents, it does not know the best location to 
drop the data object. The ant agent has to move or jump randomly in the grid space 
until it finds a place that satisfies its object dropping criteria, which usually consumes 
a large amount of computation time. In this paper, we present a novel MSF clustering 
approach for document clustering analysis. Similar as the Ant clustering algorithm, 
the MSF clustering algorithm is a partitioning algorithm and does not require a prior 
knowledge of the cluster number in the datasets. It generates a clustering of a given 
set of data through projecting of the high-dimensional data items on a two-
dimensional grid for easy retrieval and visualization of the clustering result. However, 
the MSF clustering algorithm is more efficient than the Ant clustering algorithm 
because each document object in the collection is projected as an agent moving in a 
virtual space, and each agent’s moving activity is heuristic as opposed to the random 
activity in the Ant clustering algorithm.   



136 X. Cui and T.E. Potok 

7   Conclusion 

In this study, we proposed a new multiple species flocking (MSF) model and 
presented a distributed multi-agent approach for the MSF clustering algorithm. In this 
algorithm, each document in the dataset is represented by a boid agent. Each agent 
follows four simple local rules to move in the virtual space. Agents following these 
simple local rules emerge complex global behaviors of the whole flock and eventually 
the agents that carrying document belong to the same class will gradually merge 
together to form a flock. All agents are evenly deployed on different nodes in a 
distributed computing environment for load balancing purposes. On each node, a 
location proxy agent is introduced for maintaining the agents’ location and 
synchronizing the status between nodes in the cluster machine.  

The advantage of the MSF clustering algorithm is the heuristic principle of the 
flock’s searching mechanism. This heuristic searching mechanism helps bird agents 
quickly form a flock and reactive to the change of any individual document. Since the 
bird agent in the algorithm continues fly in the virtual space and join the flock it 
belongs to, new results can be quickly re-generated when the information stream is 
continually feed into the system. 
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