

 1

Understanding the Emergence of Self-organized
Insurgent Groups

(Stage Report)

Xiaohui Cui, Justin M. Beaver, Jesse L. St. Charles and Thomas E. Potok

Applied Software Engineering Research Group
Oak Ridge National Laboratory

CONTENT

1. Introduction ………………………………………………………………………………2
2. Understanding Insurgent as Self-Organized Organizations …………….………..………2
3. Agent Based Ideology Models for Emergence ……………………………………..……6

3.1 Emergence ………………………………………………………………………….6
3.2 Agent Based Model ……………………………………………………………….. 6
3.3 The Ideology Model in ABM ………………………………………………………7

4. Developing Ideology Swarm Social Learning Model ……………………………………9
4.1 Swarm Social Group Model ………………………………………………………..9
4.2 Adaptive Environment ………………………………………………………….…11
4.3 Computational Experiments …………………………………………………….…12
4.4 Results …………………………………………………………………………..…13
4.5 Discussion ………………………………………………………………………….15
4.6 Ideology Swarm Model Validation ………………………………………………..15

5. Modeling and Validating the Emergence of Self-Organized Groups …………………...17
5.1 Technical Approach ………………………………………………………………..17
5.2 Validation Approach …………………………………………………………….....19
5.3 Validation Process ……………………………………………………………….....20
5.4 Determining Accuracy of Fit ……………………………………………………….20
5.5 Determining Predictive Validity ……………………………………………………21
5.6 Validation Results …………………………………………………………………..22
5.7 Next Step ……………………………………………………………………………26

6. Community Social Network Extraction and Analysis ……………………………………27
6.1 OSS Community Network Structures Extraction …………………………………..27
6.2 Network Structures Analysis …………………………………………………….....28

7. Next Step Research: Modeling Social Network Emergence of Human Community …….30
7.1 Modeling Social Network Emergence of Human Community ………………..........30
7.2 Self-motivating teams …………………..…………………………………………...31
7.3 Stigmergic Model for Distributed Task Allocation …………………………………31
7.4 Setup New Project or Join Existing Project …………………………….…………...32

8. Relating the Researches with DoD Need …………………………………………………33
9. References ………………………………………………………………………..……….34

 2

1. Introduction

This is a stage technical report on the work performed under the Office of Naval
Research (ONR) contract number N0001408IP20066 during the interval from April 2008 through
the end of September 2008. In this research, we are conducting a proof-of-principle research on
integrating a particle swarm social model (PASS) with agent based approaches for modeling the
social interactions and emergent social behaviors of self-organized insurgent groups. In contrast
to the large-scale, time-consuming, and complex agent-based social simulation, this project
focuses on developing a PASS model that is composed of ideology agents and is capable of
generating complex emergent social behaviors that are realistic enough to understand the social
behaviors of insurgent groups. The emergent behavior of the system, in which patterns and trends
emerge, is considered more important than the behavior of any single part of the system. The
results of this model have been validated in order to increase confidence of this model in
simulation training and decision-making analysis.

2. Understanding Insurgencies as Self-Organized Organizations
 As Filkins reported in December 2005 [1], Iraqi and American officials in Iraq consider
the most significant insurgent issue is the fact that the insurgency consists not only of a few
groups, but of dozens, possibly as many as 100, groups. These groups are not, as often depicted,
hierarchical organizations whose members carry out orders from the above. They are believed to
act on their own and know how to organize themselves with less command, control or charisma.
Marion and Uhl-Bien [2] pointed out that these insurgents were self-initiating and self-sustaining.
They argued that if bin Laden was not there, someone with another name but with the same
character and role as that of bin Laden would be there. This is why it is called a phenomenon, not
a person.

Our inability to perceive insurgent groups as self-organized networks puts us at risk in the
War on Terror [3]. We use factors that apply to our world (the hierarchical organizations) to
understand and assess the results of count insurgent (COIN) actions in Iraq. Considering these
factors, we think we are winning. We assume that al-Qaeda is weaker now because its
charismatic leader is on the run, hiding in caves. We assume that, if we prevent insurgents from
using advanced technology for communication, they will be unable to receive their orders, and
therefore, will not launch attacks. We assume that if we remove the top insurgent leaders, or if we
decapitate their organization, young terrorists will slink away from the anarchic, leaderless group.
However, the real truth is that we are fighting this war in the blind [4].

Unlike most ongoing COIN studies that are typically concerned with enhancing existing
military capabilities for countering insurgents, our research focuses on developing a new self-
organized human organization model to understand the formation and coordination of insurgent
groups, to predict insurgent group behavior, and eventually to develop alternate strategies to
defeat them. To prove the feasibility and credibility of this model for simulation training or
decision-making analysis, we have developed a method for validating the model developed in this
project.

Our research in this project is mainly inspired from the Swarm Intelligence research,
which focuses on discovering the essential concepts or self-organized local rules that contribute
to the global emergence of social behaviors in insects or animals. In recent years, various social
studies, particularly in the political science, have statistically proved the self-organized
phenomena of insurgent warfare in Iraq, Columbia, and Afghanistan [5]. Combining their
research results with the methods of exploring the essential concepts of Swarm Intelligence in
nature, we built a highly ideological agent-based model to represent self-organized insurgent
organizations. In Swarm Intelligence research, discovery of local simple rules for the emergence
of global behaviors is not used to describe all the details of social insects in nature, but used to
represent essential concept of emergence. The significance of this insurgent human organization

 3

ideology model is not to bring up a model that is absolutely right in all its details. This model is
not going to claim to be completely right because humans obviously have a far more complex set
of attitudes, motives, cultures, behaviors, etc. The importance of this kind of model will offer a
powerful and counter-intuitive insight even though it is highly idealized [6].

By using this ideological model, we can understand the complex dynamics of human self-
organized insurgent organizations or other human organizations by abstractly representing such
an organization as a network of interacting agents. This representation permits of comparison and
combined analysis of seemingly divergent domains due to the common patterns of organization
displayed in their networks of interacting agents. Such abstract representations across domains
are not uncommon: they actually reflect the existence of common principles of organization [7]
similar to ones seen in nature [8]. Through investigating both software developers and social
insects as agents interaction in a complex network, Valverde and colleagues [9] have proved the
existence of common statistical patterns of organization in a wasp colony and in the open source
software (OSS) developer communities. In their research, the agents involved—whether they are
social insects or humans—have limited knowledge of the global pattern they are developing.
Apparently, insects and humans differ significantly in what the individual agent can be aware of
the overall designing goals. The analogy will be stronger if the individuals are of equivalent
complexity in their ability to make decisions, e.g. a comparative study of human social
organizations across the domains of insurgent groups and OSS developer communities. This
concept helps us establish the connection between the OSS community and insurgent groups.

Figure 1: Self-organized social organization model takes place in both the insurgent

groups and OSS developer communities

Model extracting and validating depend on the availability of large amounts of real world
data. Collecting extremism/insurgent/terrorist data is extremely difficult because of the secretive
nature of these organizations. Members of insurgent/terrorist groups are not easily accessible to
researchers as are members of other types of social groups. As a result, the small amount of
available data itself is suspected and much of the recording on terrorist groups and on terrorism
itself is secondary, based on others’ data, such as interviews conducted with prisoners. Beyond
their special features, the insurgent groups display some overall patterns of organization not far
from the ones seen in other types of self-organized human organizations [1, 3, 4]. In this research,
to avoid the limited data for actual insurgent groups and leverage the high availability of
historical data about some online self-organized social communities, we use the online OSS
communities as a metaphor for insurgent groups in our ideological agent based model research.
The OSS community on the SourceForge website comprised of more than 200,000 OSS
developing teams and nearly a half million registered developers. As shown in Figure 1, we
conducted research on ideology self-organized human organization models taking place in both

 4

the insurgent groups and the OSS developer communities. Both systems define interacting agent
networks with similar features that reflect limited information shared among agents. By viewing
both organizations as a network of interacting agents involving goals and constraints, we can
compare insurgent groups to OSS development communities and jointly build up evidence for
basic principles of self-organization. Understanding these principles offers a first step toward
quantitative reference models to explain emergent social behaviors in insurgent groups. As shown
in Figure 2, by illuminating the extent to which self-organization local behavior is responsible for
OSS communities’ global patterns, such as hierarchical structure, we will be able to gain insight
into the origins of organization in insurgent groups. In trying to understand the global behavior
displayed by programmers inside the OSS communities, it can be useful to know if some patterns
might be a consequence of simple rules shared by both types of systems. If common patterns are
found to exist, we will have evidence for basic principles of self-organization that apply to both
communities.

Figure 2: Technical Approach

As a proof-of-principle research, this project developed a predictive simulation

framework for understanding the emergent behaviors in the complex social systems by utilizing
agent-based modeling. We have generated a computational research methodology that provides a
basis for studying self-organized systems through computational experiments. Our research effort
has focused on the following three areas:

1. Conducting a proof-of-principle study on building an ideology swarm social learning
model for collective problem solvers in an adaptive environment
We studied the integrating swarm algorithm, social knowledge adaptation, and multi-

agent approaches for modeling the social learning of self-organized groups and their collective
problem solveingsolving behaviors in an adaptive environment. The objective of this research is
to apply the particle swarm metaphor as a model of problem solvers’ group social learning for a
dynamic environment. The research provides a platform for understanding and insights into
knowledge discovery in social groups. Results from the simulation have shown that effective
communication is not a necessary requirement for insurgent groups to attain victory in an
adaptive environment.

2. Applying the simulation framework on the development community, simulating and
validating the formation of the OSS developer team

 5

We have been leveraging the OSS development domain to extract concrete measurement
of individual and group behavior in order to create a data-based model of the behavior of OSS
groups. In addition, the existence of these data sets allow for the validation of the developed
models in terms of their ability to predict group behaviors such as membership gains/losses,
group efficiency, and the occurrence of group-level actions. Our goal is to evolve our OSS model
into a generic model of group-level behavior that may be applied to predict the behaviors of
groups such as terrorist cells and insurgencies. To experimentally test and refine our model
beyond the parameter values that were fixed in the historical case, we developed an agent-based
simulation to test and validate the representative of our model. With the simulation, we
experimentally manipulated the parameter values that were fixed in the archival data to
investigate whether our model generalizes to a range of real world cases. Proof-of-concept
research to develop an emergent behavior predictive toolkit was also conducted.

3. Extracting OSS community social network and developing agent-based ideology models
for exploring network emergence in self-organized social systems
We examined how the self-organizing behavior of individual actors affects the

emergence of different types of system-level networks. We used detailed historical data on a self-
organized human social network to illustrate and test the plausibility of the model’s theoretical
mechanisms. This social network was derived from the rich real-world data available in the OSS
community on the SourceForge website, comprised of more than 200,000 OSS project developing
teams and nearly a half million of registered developers. We used the data to examine how this
OSS community evolved from year 2003 to 2008. From these historical data, we reconstructed
how the local behavior of forming OSS project teams lead to the emergence of the OSS
community network. We will use networks of developers who collaborate on OSS project teams
as our frame of reference and investigate how the choices developers make in picking and
contributing their projects determine the global network topology of the entire field.

 6

3. Agent Based Ideology Models for Emergence

3.1 Emergence

There is a lot of confusion in literature about the definition of emergence [10-12]. We
will use the following definition as our working definition:

“Emergence is a dynamic nonlinear process that leads to emergents (properties,
behavior, structure, patterns …) at the macro level of a system from the
interaction of the parts at the micro level. Such emergent can not be readily
understood by taking the system apart and looking at the parts. They can
however be studied by looking at each of the parts in the context of the system
as a whole”. [13]
On the basis of the interaction between these elements, properties are likely to emerge

that cannot be attributed to the individual elements [12]. The notion of ‘emergent properties’ can
be used to describe complex social processes resulting from individual behavior [14]. Holland
[10] provides an outline of the characteristics of emergence: 1) Emergence occurs in systems
composed of components that obey simple laws. 2) The interactions between the parts are
nonlinear so the overall behavior cannot be predicted by summing the behaviors of the isolated
components. Gilbert and Conte [15] put the emphasis on emergence as a key concept of multi-
agent simulations in the social sciences approach.

With the fast increase of the interaction between humans, the self-organized social
structures have been very important to human development. Self-organized human social system
exhibits much more emergent social behaviors than any other complex system. The social
phenomena of the self-organized human organization are shaped by the individual’s behavioral
choices and social interactions. These emergent behaviors or emergent social behaviors (ESB)
cannot be predicted by analyzing properties of each individual component in this system. The
linear, mechanistic view of the world based on a reductionist paradigm that breaks problems into
component parts is no longer suitable for understanding and predicting the emergent social
phenomena of self-organized human social system. It is necessary to build a new systematic
research framework for understanding the emergent behaviors.

Model building is the most important tool in the study of emergence. The critical steps in
constructing a model are the selection of salient features and the laws governing the model
behavior. Emergence cannot be understood without models. Modeling the behavior of groups of
individuals remains a challenging problem due to the complexity of human beings and their
interactions. Interacting groups of people spontaneously organize themselves into groups to
create emergent organizations that no individual may intend, comprehend, or even perceive.
Rapid advances in computing technique has created a revolutionary modeling tool, the agent-
based model (ABM), for scientific modeling and understanding of the complex social systems.

3.2 Agent Based Model

There is a growing realization across the social sciences that one of the best ways to build
useful theories of group phenomena is to create working computational models of social units
(e.g., individuals, households, firms, or nations) and their interactions, and observe the global
structures that these interactions produce. ABM and its computer simulation of human behavioral
and social phenomena is a successful and rapidly growing interdisciplinary area. The ABM is a
new approach that aims to model the complex social macro dynamic behaviors emerging from the
interactions of autonomous and interdependent individual actors. ABM builds social structures
from the ‘bottom-up’, by simulating individuals with virtual agents, and creating emergent
organizations from the operation of rules that govern interactions among agents.

The ABM was originally developed in computer science and artificial intelligence as a
technology to solve complex information processing problems on the basis of autonomous

 7

software units. Each of these units can perform its own computations and have its own local
knowledge, but the units exchange information with each other and react to input from other
agents. The approach was soon applied to problems involving the complex social dynamics that
are of key interest to sociologists: notably emergent social norms, social structure, and social
change. ABM provide true bridging explanations that link two distinct levels of analysis: the
properties of individual agents (e.g. their attributes and interactions), and the emergent group-
level behavior. ABM can be used for examining how very simple rules of local interaction can
generate highly complex emergent behaviors that would be extremely difficult (if not impossible)
to model by using traditional methods. ABMs can be used as virtual laboratories, to reveal the
micro mechanisms responsible for highly complex social phenomena.

3.3 The Ideology Model in ABM

Effectively unlimited computational power removes physical constraints on the
elaboration of the models, allowing researchers to write “realistic” models of enormous
complexity. Some models even include intricacies such as when agents fall asleep and what is
needed to wake them up [16]. In this case, it is far more difficult to analyze results in order to
understand the mechanisms that generated them and their relevance when questions are
theoretical. In our simulation implementation, the agent in ABM is autonomous. They
independently pursue those individual goals based on their own local information. Agents in our
ABM follow extremely simple rules. We assume that the overall system’s complexity emerges
from the interaction of many very simple components, rather than from great complexity in the
behavior of each individual agent.

Adding complexities might be reasonable in a model whose goal is a close match to a
specific set of empirical data. However, closer fit to data comes at a cost.; additional processes
obscure the fundamental elements of the generative theory, while adding nothing that is
conceptually critical. Adding more theoretical components to the model, however well each one
could be empirically justified, would only have interfered with that goal. “The more realistic and
detailed one’s model, the more the model resembles the modeled organization, including
resemblance in the directions of incomprehensibility and indescribability” [17]. For example,
Schelling’s model of spatial segregation [18] is a pioneering example of an emerging
phenomenon resulting from simple social interaction. In the U. S., the level of residential
segregation has remained high, despite the fact that the income inequality between blacks and
whites is decreasing. Schelling’s aim was to explain how segregation residential structures could
spontaneously occur, even when people are not so very segregate themselves. Local interactions
are sufficient for spatial homogeneous patterns to occur; spatial segregation is an emerging
property of the system’s dynamics, while not being an attribute of the individual agents. The
basic Schelling model is very simple. It did illustrate a surprising phenomenon: the "tolerant"
households could generate residential segregation through their local decisions. The Schelling
model has been used as an explanation for the persistence of residential segregation despite all the
positive, progressive social policies, such as antidiscrimination laws and affirmative action
policies. Gilbert [19] has shown that some features that seem to be fundamental to human
societies, such as the ability to recognize global features, could be added to the basic Schelling
model and only yielded the same type of clusters of similar agents. Although the results may vary
slightly in the form of the clusters and the degree of clustering, it is not plausible to conclude that
these added features significantly improve the original basic model.

Recently, several physicists have used simulation models to study patterns that can
emerge when many humans interact, including human trails [20], traffic jams [21], Mexican
waves [22], and panic behavior of pedestrians [23]. In these models humans are represented as
particles with variation in speeds and/or position, and without any requirement of cognition for
the agents. In some applications of financial markets, agents are explicitly called ‘zero
intelligence agents’ to show that full rationality is not required to explain observed patterns in

 8

economic statistics. These simple reactive agent-based simulation models have often provided
surprisingly apt accounts of empirically observed behavior. In the next section, we used this
particle principle implemented an agent based model and simulation. We followed the KISS
(keep it simple, stupid) principle [24] for implementing the self-organized insurgent group ABM.
We purposely chose to create highly idealized models that boil down a collective phenomenon to
its functional essence. Our ‘meta-goal’ in this research is to discover the principles that explain
the phenomena observed empirically. It is possible to illustrate varieties of emergence by using a
very simple computational model. To prove the KISS concept can be applied in the ideology
agent based model, we first conducted research: developing an ideological model for simulating
human organization’s collective problem solving methods, in the next section.

 9

4. Developing Ideology Swarm Social Learning Model for Collective
Problem Solvers in Adaptive Environment

The notion of social learning has been used with many different meanings to refer to the

processes of learning and the change of individuals and social systems. In this research, social
learning refers to the process in which agents learn new knowledge and increase their capability
by interacting with other agents directly or indirectly. In this research, a particle swarm ideology
social learning model is used to model the group’s social learning and collective searching
behavior in a dynamically changing environment. Different from the randomly changing
environment model used in many research efforts, a new adaptive environment model, which
adaptively reacts to the problem solver agent’s collective searching behaviors, is proposed. An
agent based simulation is implemented for investigating the factors that affect the global
performance of the whole problem solver community through social learning. The objective of
this research is to apply the swarm metaphor as a model of for social learning in the adaptive
environment and to provide insight and understanding of social group knowledge discovery and
strategic search in a changing environment.

4.1 Swarm Social Group Model

The swarm social group model describes a population of problem solvers that are
affiliated with different groups, seeking to maximize a fitness function V that maps a set of
solutions X into real values. The fitness values of all solution X produce the fitness landscape L.
Problem solvers use the information provided by other solvers to enhance their capability in
finding the highest fitness value solutions in L. The solution landscape L generated by the fitness
function V dynamically changes as the problem solvers search for the highest fitness value
solution. This demands that the groups not only find the highest fitness value solution vmax in a
short time, but also track the trajectory of the solution in the dynamic environment. The problem
solvers do not have any prior knowledge about the landscape L. The individual solver can share
their experience freely with other individuals that belong to the same group. However, the
information exchanged between the groups is limited and possibly inaccurate. Social learning
behavior occurs when individuals can observe or interact with other individuals. An individual
will combine his individual experience and the information provided by other experienced
individuals to improve its search capability.

The mathematic model of particle swarm algorithm [25] is used to describe the
individual’s social learning behavior. The particle swarm algorithm is a swarm algorithm
originally developed by Eberhart and Kennedy in 1995 [26], inspired by the social behavior of
bird flocks and social interactions of human society. In the particle swarm algorithm, birds in a
flock or individuals in human society are symbolically represented as particles. These particles
can be considered as simple agents “flying” through a high dimensional solution space searching
for a high fitness value solution.

Under the particle swarm metaphor, each individual problem solver is represented as a
search particle. The particle moves through the problem solution fitness value landscape to search
for a function optimum. Each particle has two associated properties, a current solution fitness
value f(x) and a moving velocity v, to represent the particle’s experience and searching behavior.
Each particle has a memory of its best problem solution location pbest in the landscape where the
solution can generate the highest fitness value. Each particle also knows the global best location
gbest, the highest fitness value solution ever found by all other neighbor particles. During each
step, in the solution fitness landscape, a particle moves from its current position to a new location
based on its velocity vector. The velocity vector is influenced by the particle’s previous velocity,
its current location, and its pbest and gbest value. For every generation, the particle’s new moving
destination is computed by adding the particle’s current velocity V to its current location X.

 10

Mathematically, given a multi-dimensional solution space, the ith particle changes its
velocity and location according to the following equations:

))(**)(**(* 2211 idgdidididid xprandcxprandcvwv −+−+= (1)

ididid vxx += (2)

where, pid is the location of the particle where it experiences the best fitness value; pgd is the
location at which the particle experienced the highest best fitness value in the whole population;
xid is the particle’s current location; c1 and c2 are two positive acceleration constants; d is the
number of dimensions of the problem space; rand1 and rand2 are random values in the range of
(0,1). w is called the constriction coefficient [27, 28]. Eq. 1 requires each particle to record its
current coordinate xid and velocity Vid along the dimension d in a problem space, its personal best
fitness value location vector Pid and the whole neighborhood population’s best fitness value
location vector Pgd. The best fitness values are updated at each generation based on Eq. 3, where
the symbol f denotes the fitness function; Pi(t) denotes the best fitness coordination; and t denotes
the generation step.

⎩
⎨
⎧

+
=+

))1((
))((

))1((
tXf

tPf
tPf

i

i
i

))(())1((
))(())1((

tPftXf
tPftXf

ii

ii

>+
≤+

 (3)

The Pid and the coordinate fitness values f(Pid) can be considered as each individual

particle’s experience or knowledge. The Pgd and the coordinate fitness values f(Pgd) can be
considered as the best knowledge that an individual can acquire from its neighbors through
interaction. The social learning behavior in the swarm algorithm model is mathematically
represented as the combination of an individual particle’s experience and the best experience it
acquired from neighbors for generating the new moving action.

In the canonical particle swarm algorithm, a particle’s knowledge will not be updated
until the particle encounters a new vector location with a higher fitness value than the value
currently stored in its memory. However, in the dynamic environment, the value of each point in
the solution fitness value landscape may change over time. The problem solution with the highest
fitness value ever found by a specific particle may not have the highest fitness value after several
iterations. It requires the particle to learn new knowledge whenever the environment changes.
However, the mathematic model in Eq. 3 lacks a knowledge updating mechanism to monitor the
change of the environment and renew the particle’s memory when the environment has changed.
As a result, the particle continually uses outdated experience/knowledge to direct its search,
which inhibits the particle from following the movement of the current optimal solution, and
eventually, causes the particle to be easily trapped in the region of the former optimal solution.
This swarm social group model needs a new adaptive social learning model to enable each
particle to automatically detect change in the environment and use social learning to update its
knowledge. In this model, there is no specially designed particle to monitor the change of the
environment. Each particle will compare the fitness value of its current location with that of its
previous location. If the current fitness value doesn’t have any improvement compared to the
previous value, the particle will use Eq. 4 for the fitness value update. Eq. 4 is slightly different
from the traditional fitness value update function provided in Eq. 3.

⎩
⎨
⎧

+
=+

))1((
*))((

))1((
tXf

tPf
tPf

i

i
i

ρ

ρ
ρ

*))(())1((
*))(())1((

tPftXf
tPftXf

ii

ii

>+
≤+

 (4)

 11

In Eq. 4, a new notion, the evaporation constant ρ, is introduced. ρ has a value between 0
and 1. The personal fitness value that is stored in each particle’s memory and the global fitness
value of the particle swarm will gradually evaporate (decrease) at the rate of the evaporation
constant ρ over time. If the particle continually fails to improve its current fitness value by using
its previous individual and social experience, the particle’s personal best fitness value pbest as well
as the global best fitness value gbest will gradually decrease. Eventually, the pbest and gbest value
will be lower than the fitness value of the particle’s current location and the best fitness value will
be replaced. Although all particles have the same evaporation constant ρ, each particle’s updating
frequency may not be the same. The updating frequency depends on the particle’s previous pbest
and gbest fitness value and the current fitness value f(X) that the particle acquired. The particle will
update its best fitness value more frequently when the previous best fitness value is lower and the
f(X) is higher. Usually the new environment (after changing) is closely related to the previous
environment from which it evolved. It would be beneficial to use the existing
knowledge/experience about the previous landscape space to help a particle searching for the new
optimal. In this situation, the particle will keep the best fitness value in its memory until the best
fitness value becomes obsolete. The fitness value update equation enables each particle to self-
adapt to the changing environment.

In this swarm social group model, the social network(s) need to be implemented to
dictate the types and frequencies of problem solver agent interactions. The problem solver agent
belonging to the same group can exchange information without any restriction. The information
exchange between agents belonging to different groups is not as efficient as that within the same
group. Because of the delay and misunderstanding, some group members may not be able to
share their newest high fitness problem solution to agents in other groups. In this research, an
agent based social learning simulation is implemented to investigate how the different social
network architectures affect the performance of the whole social community through social
learning.

4.2 Adaptive Environment
In the swarm social group model, the self-organized social groups search for a problem

solution with highest fitness function value as well as adapt to the changing environment. At the
same time, the change patterns of the environment will be influenced by the collective behaviors
of the social groups when these collective behaviors are effective enough to alter the
environment. We define this kind of environment as an adaptive environment. To simulate the
movement of the solutions, a test function generator, DF1, proposed by Morrison and De Jong
[29], is used to construct the solution fitness value landscape L. DF1 can generate test functions
over a wide range of complexities and simulate various problem dynamics by changing its
parameters. It has been widely used as a generator of dynamic test environments [30-32]. For a
two dimensional space, the fitness value evaluation function in DF1 is defined as:

])()(*[),(22
iiii yYxXRHMAXYXf −+−−= (i=1,...N) (5)

where N denotes the number of peaks in the environment. The (xi, yi) represents each cone’s
location. Ri and Hi represent the cone’s height and slope. By using the DF1 generator, a sample
landscape can be produced as shown in Figure 3. This sample landscape consists of eight
different sized cone-shaped peaks randomly located in the problem space.

 12

Figure 3: Sample fitness value landscape

The movement of the problem solutions and the dynamic change of the fitness value of

different solutions are simulated with the movement of the cones and the change of the height of
the cone-shaped peaks. Different movement functions generate different types of dynamic
environments. In this research, the environment change rate is controlled through the logic
function [29]:

)1(** 11 −− −= iii YYAY (6)

where A is a constant and Yi is the value at the time-step i. The Y value produced during each
time-step will be used to control the changing step sizes of the dynamic environment. In this
research, the dynamic environment is simulated by the movement of the cone’s location (xi, yi).
The Y value represents the moving velocity of the cone location.

In real-world applications, the evaluated fitness value cannot always be calculated
precisely. Most of the time, the fitness value will be polluted by some degree of noise. To
simulate this kind of noise pollution in the fitness evaluation, a noise polluted fitness value is
generated with the following approach. At each iteration, the fitness value f(x) can only be
obtained in the form of fn(x), where fn(x) is the approximation of f(x) and contains a small
amount of noise n. The function can be represented as [33]:

),1(*)()(η+= xfxf n),0(~ 2ση N (7)

where η is a Gaussian distributed random variable with zero mean and variance 2σ . Therefore, at
each time, the particle will get a fn(x) evaluation value instead of f(x).

Another dynamic mechanism of the landscape is the fitness value of the strategic
configuration which will gradually decrease with an increasing number of the searching group
members that adopt similar strategic configurations.

)1(*),(),()1(1 −−= Nii e
yxfyxf

 (8)

where f is the landscape fitness value of strategic configuration (x,y) at the iteration i. N denotes
the number of group members that adopts similar strategic configurations.

4.3 Computational Experiments
The implementations of the swarm social group model and the adaptive environment

simulations are carried out in the NetLogo agent modeling environment [34]. Each agent in the
NetLogo environment represents one particle in the model. The agents use Eq. 4 to update their
best fitness value. Initially, there are 400 agents randomly distributed in an environment that
consists of a 100x100 rectangular 2D grid. The grid represents all the possible problem solutions.
A dynamic landscape is generated as discussed in Section 3 and mirrored on the 2D grid. The

 13

initial status of the 2D grid is shown in Figure 2. Eight white circuits represent the fitness values
of problem solutions, which are generated by the DF1 function discussed in Section 3. The
brighter the white circuit, the higher the fitness value is. These white circuits will dynamically
move in the grid base on Eq. 6 and the fitness values (brightness of the circuits) are dynamically
changed based on Eq. 7 and Eq. 8. The agents are represented as color dots in the grid. Different
colors indicate different groups. The social learning of each individual is represented as the
highest fitness value broadcast within the group. The searching behavior for finding high-fitness-
value solutions is represented as the movement of an agent in the 2D grid. The movement of each
agent is controlled by Eq. 1 and Eq. 2, in which c1 and c2 are set to 1.49, Vmax is set to 5, and the
w value is set to 0.72 as recommended in the canonical particle swarm algorithm [27]. It is
assumed that agents belonging to the same group can exchange information without any
restriction. But the information exchanged between different groups will be delayed for a pre-
defined number of time-steps and some noise will be added to pollute the value of the information
to reduce the information’s accuracy. The delayed time-step for information exchange between
agent groups is pre-set as 20 time-steps. There is a 20 percent possibility that the information,
including the location of the best fitness value and the fitness value itself, is incorrect.

 (a) (b)

Figure 4: The initial environment
and agent groups

Figure 5: The collective searching results for scenario (a)
one group with 400 agents and (b) Fifty groups, eight

agents per group

 In this research, we first investigated the change of a particle’s social learning performance
when the social group structure changed from a single group to multiple groups. The performance
evaluation can be generated via computing the average fitness value of all individuals generated
in the whole search period. Two different agent group structure scenarios, scenario a and scenario
b, are simulated in this study. In scenario a, 400 agents belong to one single group. In scenario b,
the 400 agents are evenly distributed into 50 different groups with eight agents in each group.
Each simulation was run for 500 iterations. The performance of the different group scenarios
can then be generated via computing the average fitness value of all individuals generated
in the whole searching period. The average fitness value is:

k

xf
av

k

j
i

i

∑
== 1

)(
 (9)

where k is the number of agents and f(x) is the fitness value of agent j.

4.4 Results
The final agent distribution maps are presented in Figure 5. As shown in Figure 5a, for

scenario a, all agents belong to the same group. These agents can freely exchange information
about their searching performance. Every agent wants to adopt the problem solution that has the
highest fitness value. This will cause all agents to swarm around the solution with the highest
fitness value. However, because of the dynamic adaptation character of the landscape, the fitness

 14

value of the problem solutions around the highest peak will gradually reduce when the number of
problem solver agents around it increases. For scenario b, as shown in Figure 5b, limited and
noised communication between agent groups make some agents unable to receive the newest
information about the best solution that other agents have found. Consequently, agents are
distributed relatively even around different solution fitness peaks.

The problem solution searching performance of these two group scenarios is shown in
Figure 6, illustrating the average fitness value vs. simulation time step. Initially, scenario a has a
higher fitness value than scenario b, because in scenario a, with the help of social learning, all
agents can quickly aggregate around the highest peak in the landscape. However, the fitness value
in the landscape will adaptively change according to Eq. 8. The congregation of the problem
solver agents around the highest fitness value solution will cause a quick decrease in the fitness
value of the nearby solution and eventually cause the sum of the fitness value to quickly reduce.
As shown in Figure 6, the fitness value of scenario a reduces quickly from the peak and remains
low. For scenario b, because of the delay and inaccuracy of the information between groups, the
agents are evenly distributed around all fitness peaks. This distribution makes the fitness value of
the nearby landscape not decrease as quickly as scenario a and maintains a higher group fitness
value than scenario a in nearly the whole simulation.

To discover the social network architecture that can generate the highest performance, we
tested the performance of different group structures that varied from fully connected social
network, in which all individuals belong to a single group, to no connection social network, in
which no individuals belong to the same group. The searching performance is recorded as the
average fitness value over the whole simulation. The performance chart is shown in Figure 7.
According to Figure 7, the performance gradually increases when the agents are divided into
large numbers of groups. The performance reveals the highest value when there are 80 agent
groups and five agents in each group; then, the performance gradually reduces. The result
indicates the problem solver community with a large number of small groups is more efficient
than a community with a group that has a large number of members in an adaptive environment.

0

200

400

600

800

1000

1200

1400

Time

scenario a
scenario b

Figure 6: Comparison of the average fitness values for scenario a and b

 15

Figure 7: Comparison of the average fitness values of different agent group structures

4.5 Discussion
Most reported searching behavior models only discuss the scenarios in a static

environment or a randomly changing environment. The performance evaluation of various
approaches is mainly based on how fast an approach can find the optimal point in the benchmark
problems. However, the real social world is rarely static and its changes are not random. Most of
time, the changes are influenced by the collective actions of the social groups in the world. At the
same time, these influenced changes will impact the social groups’ actions and structure. In this
paper, a modified particle swarm social learning model is developed to simulate the complex
interactions and the collective searching of the self-organized groups in an adaptive environment.
We constructed a novel agent based simulation to examine the social learning and collective
searching behavior of different social group scenarios. Results from the simulation have shown
that effective communication is not a necessary requirement for self organized groups to attain
higher profit in an adaptive environment.

4.6 Ideology Swarm Model Validation

Part of the hesitance to accept multi-agent and swarm-based modeling and simulation
results rests in their perceived lack of robustness. A model needs to be validated before it can be
accepted and used to support decision making. The next step in this research will be focused on
the self-organized social group model simulation and validation. There are several traditional
ways to validate agent-based systems and the choice depends on model complexity and the actual
phenomenon investigated. These validation methods include [35-38]:

(1) Systematically comparing simulation model results to data coming from a real world
system;

(2) Comparing simulation model results with mathematical model results. This approach has
the disadvantage of requiring construction of the mathematical models which may be difficult to
formulate for a complex system; and

(3) Docking with other simulations of the same phenomenon. Docking is the process of
aligning two dissimilar models to address the same question or problem, to investigate their
similarities and their differences, and to gain new understanding of the issue being investigated
[39].

Because of the heterogeneity of the agents and the possibility of new patterns of macro
behavior emerging as a result of agent interactions at the micro level, model validation in PASS
project is different from the traditional validation [40-43]. In the next section, we provided a

 16

validation method with two stages of model validation, corresponding to the two levels at which
agent-based models exhibit behavior: the micro level and the macro level. The first stage is the
micro-validation of the behavior of the individual agents in the model. In the simulation, agents
are not replications of specific human individuals. They are simplified, general representations.
The simplicity and generality reduces the ambiguity of any analysis of their behavior and social
interaction at the cost of losing expressiveness relative to qualitative studies of observed actors.

The second stage is macro validation of the model’s aggregate or emergent behavior
when individual agents interact, which can be done by utilizing global network properties and
data mining. If the social network created by the simulation has the same network properties; (e.g.
statistically similar clustering coefficients and scale-free parameters to that of the empirical social
network), then we claim that our simulation social network structure is similar to the real social
network. Data mining offers a novel validation technique, because we can perform the same data
mining and clustering algorithms on the simulation data, and the algorithm tells us what are
considered the most significant factors. Therefore, if data mining produces the same factors and
the same clusters for the simulation data as for the empirical data, then we claim that the trends
and patterns within the simulation correlate to the same trends and patterns in the real system.

 17

5. Modeling and Validating the Emergence of Self-Organized Groups

We have been leveraging the domain of the Open Source Software development to

extract concrete measures of individual and group behaviors in order to create an emergence
model of self-organized human groups. The eventual task in this project is building a highly
ideological agent-based model to represent self-organized insurgent organizations. Beyond their
special features, the insurgent groups display some overall patterns of organization not far from
the ones seen in other types of self-organized human organizations [1, 3, 4]. To avoid the limited
data for actual insurgent groups and leverage the high availability of historical data about some
online self-organized social communities, we use the online OSS communities as a metaphor for
insurgent groups in our ideological agent based model research. Understanding these principles
offers a first step toward quantitative reference models to explain emergent social behaviors in
insurgent groups.

We used detailed OSS real world historical data on SourceForge to illustrate and validate
the model’s theoretical mechanisms. SourceForge, an online center for OSS development
communities, provides collaborative resources for approximately 200,000 projects. This data
consisted of all the activity information of OSS software developers and users that registered on
SourceForge from 2003 to 2008. We developed scripts that query the SourceForge Research Data
Archive for project data that meet our criteria. Because this project seeks to understand both the
social and technical impacts on projects, establishing a minimum threshold for team size was
necessary to insure that the social element was properly represented. We were interested in
projects that reached a minimum team size of 20 developers at some point in the project lifetime
in order to insure that the social and technical factors were well represented. In addition, we
eliminated projects that did not appear to use the SourceForge collaboration tools as a significant
means for communication and coordination. In all, we identified 67 projects as viable for use as
training data for our model. From these data, we can reconstruct how the local behavior of setting
up the project teams that created individuals led to the emergence of the systemic network. We
created an agent-based model simulation to test the representation of our model. With the
simulation we experimentally manipulated the parameter values that were fixed in the archival
data to investigate whether our model generalizes to a range of real world cases. In addition, the
existence of these data sets allows for the validation of the developed models in terms of their
ability to predict group behaviors such as membership gains/losses, group efficiency, and the
occurrence of group-level actions.

5.1 Technical Approach
We have developed a model that uses agent technology to simulate both an OSS project

group and each individual within that group, in order to characterize its complex social and
technical aspects. OSS communities are environments that offer unique insight into the
mechanics of communication between individuals, actions of individual contributors, and the
popularity and performance of project groups. These elements are tracked and measured to a
sufficient level of detail such that they can serve as direct inputs into a model of OSS group
behavior. This research leverages that availability of data in order to create a data-based model of
the complex system of OSS software development.

Our approach to simulating the complex environment of group behavior is to use an
agent-based simulation framework and model each individual as a unique agent capable of
making independent decisions. Figure 8 depicts the agent architecture used in this simulation.
Software agents are used to represent the behavior of both individuals and also the group.
Connecting the agents are interfaces, which are the mechanisms for communicating group state to
each individual agent, and for communicating individual contributions to the group agent. The
Group Agent was designed to be a data-based model, using Bayesian Belief Networks, which

 18

would exhibit behavior consistent with the collected project metrics. Each Individual Agent is a
rule-based model that adjusts its behavior based on the current state of the project. The rules are
meant to reproduce each individual developer’s degree of satisfaction with the group and
motivation to continue to work towards group goals.

Figure 8: Agent-based Simulation Architecture

In the simulation, information flows cyclically from the group to the individual agents

and fed back to the group until stopping criteria are met. The group agent uses the individual
contributions to make decisions about group-level events, and individual agents use the group-
level events to make decisions about their individual level of contribution. The decisions made by
each agent are based on the data extracted from the OSS domain and thus are grounded by the
actions of actual OSS projects.

Initially, the project agent and each of the initial developer agents are initialized to either
random values or known values, depending on the presence of any known initial conditions.
Information flows cyclically from the project to the individual agents and fed back to the project
again (as depicted with arrows in Figure 8) until stopping criteria are met. The project agent uses
the developer contributions to make decisions about project-level events, such as the occurrence
of a software release, or the addition/subtraction of project developers. The developer agents use
the project-level events to make decisions about their individual level of contribution in terms of
both source code and communication via project message boards. The simulation was
implemented using the Multi-agent Simulator of Networks (MASON), a set of libraries provided
jointly by George Mason University’s Evolutionary Computation Laboratory and Center for
Social Complexity.

 19

Figure 9: Project Agent Bayesian Belief Net Design

The Project Agent was designed to be a data-based model that would exhibit behavior

consistent with the collected project metrics. We used a three-tier Bayesian Belief Network as
the probabilistic mechanism for implementing the model, as shown in Figure 9. Software
Engineering and project metrics from the Developer Agents are accumulated and entered as
known values into the nodes at the Input Tier of the network. Discretization was accomplished
by mapping state levels to standard deviations in the underlying metric’s distribution. The six
metrics identified at the Input Tier were found to be the most significant factors in a descriptive
analysis. The Project Decision Tier infers changes in the state of the project based on the inputs.
These changes include whether or not the project is ready to make a software release, or whether
the maturity of the project has improved. The Project Agent makes decisions on the state of each
of these variables by applying a random number generator to the spectrum of beliefs associated
with the appropriate node. The Output Tier uses the inferred states of the Project Decision Tier to
deduce the effects of those states on variables such as the utility (number of downloads) of the
software product, or the popularity (group ranking) of the project. The states and associated
beliefs of the Output Tier are the data that drive the decisions made in the Developer Agents.

Each Developer Agent is a rule-based model that adjusts its behavior based on the current
state of the project. The rules are meant to reproduce each individual developer’s degree of
satisfaction with the project and motivation to continue to work on it. A Developer Agent’s
likelihood to contribute to the project in terms of forum messages, source code contributions, or
bug fixes is dependent on that developer’s perception of the project’s progress, prestige, and
utility. The Project Agent provides probability values for each of these measures to each
Developer Agent, in addition to information regarding changes in project membership or whether
a release has occurred. The Developer Agent determines a level of participation in the project by
applying a random number generator to these probabilities.

5.2 Validation Approach
Validating the group behavior model involves using the OSS data to confirm the ability

of the model to characterize the data set, and the ability of the model to make predictions for
unknown data. The Accuracy of Fit is a quantitative determination of how well a model
represents the underlying data, and is measured through an analysis of the Equality of Means and
the Equality of Variances between the modeled values of group behavior and the associated
actual values. The Predictive Validity is a quantitative way of determining how well a given

 20

model characterizes an unknown, and is measured using the Average Absolute Error (AAE). This
section describes the approach to these activities including an outline of the validation process,
and a description of the statistical tests and formulas used to quantify accuracy of fit and
predictive validity.

5.3 Validation Process
The general approach to validation of the agent-based simulation of OSS projects is to

train the model with the software engineering data and then measure the ability of the model to
both accurately represent the distribution of selected measures for a given project and accurately
predict the distribution of those measures.

Figure 10: Model Validation Process

The validation process for the agent-based simulation involves three phases, and is

depicted in Figure 10. Instrumentation is the phase where the model steps through a
predetermined number of time-slices, but loads each of the random variables in the model from
the actual data. In effect, instrumentation is the initialization of the model to a specific project.
In the simulation phase, the model is tested with both modeled and actual data values for each of
the random variables at each of the time slices are recorded. The Validation phase is the
statistical comparison of the modeled and actual data. The specific tests that are used to validate
the model are described in following Sections.

5.4 Determining Accuracy of Fit
The Accuracy of Fit measure is a quantitative determination of how well a model

represents the underlying data. It is a measure that indicates the correctness of the model with
respect to the data that was used to construct the model. Accuracy of Fit is determined through
an analysis of the Equality of Means and the Equality of Variances between the modeled values
of the open source software measures and the associated actual values.

The Equality of Means Hypothesis Test as shown in Figure 11 quantifies the confidence
that the mean value of two given populations is equivalent. By comparing the Equality of Means

 21

between actual open source software values and modeled open source software values, the ability
of the model to accurately characterize the underlying data set is revealed. If the Test Statistic (t)
for the given quality measure is less than the critical value (tn-ν, α/2) for that measure, then the null
hypothesis must be accepted, the means are determined to be equivalent, and the model is said to
provide an accurate fit for the underlying data. For this study, a confidence of α = 0.9, or 90
percent was used for all Equality of Means calculations. Thus, there is 90 percent confidence that
all Equality of Means determinations are correct.

Figure 11: Hypothesis Test for Determining Equality of Means

This approach to calculating the Equality of Variances is to use a textbook rule of thumb

test. The purpose of this test is to compare the modeled data to the actual data if the ratio of the
maximum variance value to the minimum variance value is less than three to consider the
variances equivalent. The application of this rule of thumb is appropriate in that it bounds the
relationship of the variances. The goal for the Equality of Variances is not to get a quantifiable
confidence on the accuracy of the modeled data (which is already accomplished through the
Equality of Means test), but to get a discrete indication that the variance of the modeled data is on
the order of the variance of the actual data.

5.5 Determining Predictive Validity
The Predictive Validity is a measure of how accurately the model predicts a variable

using an unknown data set as input. It is a quantitative way of determining how well a given
model characterizes an unknown. Predictive Validity is measured using the Average Absolute
Error (AAE) and Average Relative Error (ARE). AAE and ARE describe the deviations of the
actual data from the modeled data, and are defined in Figure 12 and Figure 13.

 22

Figure 12: Calculation of Average Relative Error

Figure 13: Calculation of Average Absolute Error

By definition, the lower the values of AAE and ARE, the more closely the model
approximates the actual data. The AAE and ARE in determining Predictive Validity provide
assurance that the model developed is reliable in making predictions about unknown data. In this
study, ARE was used to validate lower variance variables and AAE is used to validate higher
variance variables, where values can confound ARE results. These measures already been
confirmed as a significant measure for the Predictive Validity of software engineering models
[53, 54], and in the case of ARE, a value of 0.25 or less (within 25% of actual value on average)
is considered acceptable to provide a useful prediction.

5.6 Validation Results

This section captures the results of applying the tests for Accuracy of Fit and Predictive
Validity to an agent-based simulation that models group behaviors in the domain of OSS
development. The validation of the developed model is in terms of five different success
measures, shown in Table 1.

Table 1 OSS Success Measures
Success Measure OSS Domain Metric Description

Group Maturity Development Status Measures the efficiency and effectiveness of the
group.

Group Membership No. of Developers A count of the group’s core membership.
No. of Events No. of Software Releases A count of the number of orchestrated actions that

the group has performed.
Group Utility No. of Downloads Measures the degree to which the group’s actions

are found to be useful in the community.
Group Popularity Sourceforge Group Ranking The popularity of the group in the community.

 23

These five measures are indicators of effectiveness and organization in a group. The goal
of this simulation is to accurately represent the underlying OSS data in terms of the measures as
shown in Table 1 and to be a reliable predictor of future trends in these measures for each studied
group. In this validation exercise, the model was instrumented with actual project data for 9 time
slices, and then simulated for additional 1, 3, 6, 9, and 12 time slices. At each interval, an
assessment of the accuracy of fit and predictive validity were recorded. Each of the charts that
present validation results use the projected (simulated) time slice values to show the trends for the
accuracy of fit and predictive validity of each variable as the simulation progressed.

The results of applying the Accuracy of Fit statistical tests, Equality of Means, and
Equality of Variances are shown in Figures 14 and 15. The Equality of Means analysis, shown in
Figure 14, highlights the statistical threshold for this test as a black line. The interpretation of this
graph is that those data points below the threshold line indicate that the simulation was able to
maintain a mean value consistent with the underlying data for those metrics. Similarly, data
points above the threshold indicate that the simulation diverged from the distribution upon which
the simulation is based. Figure 14 shows that the mean values of four of the five OSS success
measures were consistent with their actual mean values for up to three time slices. In the case of
Group Membership, the mean value was consistent for nine simulated time slices. Thus the model
performed well in remaining consistent with the underlying mean values of the data for short-
term simulation, but became less consistent as the simulation progressed. The Group Popularity
was an exception in this test, and is discussed further below.

Figure 14: Equality of Means Results

The results of the Equality of Variances test, shown in Figure 15, are similar to the

Equality of Means in their interpretation. Values above the threshold line indicate points of
unequal variance between actual and simulated data, and values below the threshold indicate
points of consistency across the variances. The model did very well at simulating the variances

 24

for modeled values consistent with the underlying OSS data. The most striking exception, as with
the Equality of Means test, is the Group Popularity measure.

For both of the Accuracy of Fit statistical tests, the model’s lack of ability to represent the
Group Popularity measure is unexpected. The developed agent-based simulation performs well in
modeling this measure for one time slice, and then its distribution quickly diverges for subsequent
time slices. We postulate that Group Popularity is modeled poorly because the assumptions
regarding a group’s influence on its popularity were flawed. In the agent-based simulation of
OSS environments, each measure is calculated with the assumption that the actions and
interactions of individuals in the group are causal factors in the emergence of group behavior. In
the case of Group Popularity, this assumption does not hold because popularity is relative to the
other groups in the environment. For example, Group Ranking, which is the Sourceforge OSS
measure for popularity, is relative to the popularity of the other projects on the web site. That is,
it is the efficiency and organization of not only one group that affects its popularity, but also all
groups that relates to each other. Because the current model is focused on the simulation of a
single OSS group and does not account for the presence and efforts of other groups, it is unlikely
that it will be able to represent Group Popularity accurately. This is confirmed through the results
of the Accuracy of Fit for that measure.

Figure 15: Equality of Variances Results

The results from applying the predictive validity tests, ARE and AAE, are shown in

Figure 16 and Figure 17. The lower variance OSS success measures are shown in the ARE
results in Figure 16. Recalling that an acceptable threshold for ARE is 0.25 or less, any values
below the threshold line indicate that the model is a good predictor for that variable. The chart
shows that for early predictions, two of the three variables are acceptable predictors. For the
variables the Number of Events and the Group Maturity, this model is a good predictor for up to
three projected time slices. Group Membership is not as easily predicted as in the earlier time
slices, but converge toward the accuracies of the other variables at approximately the sixth time
slice of simulation.

 25

Figure 16: Average Relative Error (ARE) Results

Figure 17: Average Absolute Error (AAE) Results

 26

Figure 17 shows the AAE values for the high variance measures that were used to
characterize the OSS project success. These values are not normalized and cannot be compared
to a threshold. However, they can be analyzed in the context of their ranges. Group Popularity,
for example, is instantiated in the model as the Sourceforge Group Ranking measure, which has a
range equivalent to the number of Sourceforge projects (~200,000). So, an average error of
approximately 5,000 for Group Popularity in the first time slice is surprisingly accurate given the
range of the metric. Similarly, the Group Utility measure, represented in the model as the Number
of Sourceforge downloads, is relative to a range of tens of thousands. Similar to the success
variables analyzed through ARE, the AAE values for Group Utility and Group Popularity indicate
the model is a reasonable predictor of near-term future values; however, its performance degrades
significantly as the simulation progresses. More analysis is needed to refine the model such that
its predictive performance can be improved.

The results presented in this section are the first steps in simulating the behavior of social
groups using OSS data as a basis for modeling. These results are promising as an initial attempt
and we expect the Accuracy of Fit and the Predictive Validity to improve further as the model
structure is refined and the scope of variables modeled is increased. The intent is to mature this
model to be more robust and to represent a full spectrum of group and individual attributes that
can be represented through real data sets when available.

5.7 Next Step Research Plan

We have developed a data-based approach for agent based group behavior model that
leverages OSS data and agent technology to produce a simulation that accurately represents the
source data set. Using this model, we have been able to predict group-level behaviors, such as
group membership changes, group efficiency and popularity, and the occurrence of group-level
events or actions. We are going to extend this work to analyze the following:

• Model the self-organization of groups in order to identify those factors that contribute to
a group attracting members, and those factors that repel members,

• Model an environment with multiple groups that have low-coupling interactions, and
• Apply the developed model to the domain of insurgent groups.

The intersection between a decentralized insurgency and a centralized coalition response
is the target zone of the next step research. How does a centralized response to a decentralized
actor impact on insurgent activity in an urban environment? Our goal is to provide a model for
group behavior that is applicable to a wide variety of group behavior domains.

 27

6. Community Social Network Extraction and Analysis

6.1 OSS Community Network Structures Extraction

This is a preliminary research to explain how micro level actions can account for the
formation of different classes of networks in macro level. Micro level actions refer to the choices
that actors make in forming their local, direct ties, much like the choices OSS developers make
when joining a developing project or civilians make when joining an insurgent group. In these
organizations, teams are assembled because of the need to incorporate individuals with different
ideas, skills, and resources. Self organized collectives of people create emergent group-level
patterns that are rarely understood or intended by any individual. A considerable amount of early
work on group behavior from social psychology focused on interpersonal relations and the
attributes that characterize good leaders or work teams. However, the social patterns that people
form are often organized without explicit leaders, chains of command, or fixed communication
networks.

To understand how the self-organizing behavior of individual actors in the OSS
community affects the emergence of different types of systemic level networks, we extracted
social networks of the OSS community from the SourceForge OSS database, SourceForge
Research Data Archive (SRDA), managed by the University of Notre Dame [44]. We used
networks of developers who collaborate on OSS project teams as our frame of reference; we
investigated how the choices that developers make in deciding their projects and contributions
determine the global network topology of the entire field.

Currently, accessing the SRDA programmatically was somewhat difficult. Web service
access to the database was approved by Notre Dame. These services were preliminary and relied,
on making queries in Perl using the SOAP::Lite library while data retrieval was limited to basic
‘wget’ operations. The amount of submitted messages in the OSS project discussion forums from
one developer to other members is a good indicator of his/her social position in the OSS
community. Nodes and links (i, j) of the OSS social network represent members and forum
message communication from i to j, respectively. For example, at any time, a new software bug is
discovered by the member i, a notification message is send in the project bug discussion forum.
Then, other expert members investigate the origin of the bug and eventually reply with the
solution.

The SRDA had some structural quirks that we noticed. First, each monthly snapshot of
SourceForge’s database contained a snapshot of all the discussion forums that existed that month
on the SourceForge website. What this means is that for forums that exist in a given month, the
database contains all threads ever posted in the forum. However, if a group deleted a discussion
forum in a month prior to the database snapshot, none of the threads contained within the deleted
forum would be present in the database. Simply put, we could not trust any database snapshot to
contain all threads related to a particular group. Given this, we took the approach of querying
each monthly snapshot only for messages that were posted that same month. We also were forced
to obtain new forum name lists for each month given that they could be created or deleted in any
month.

In our work we made some assumptions about the nature of social interaction on these
forums. The social network that we generated has edge weights based on the frequency of
communication. Larger edge weights indicate a stronger social connection between two
individuals for that month. Also, we simplified the representation of thread-based communication
(forum threads). When we extracted social links between users participating in the same thread
discussion, we assumed that regardless of whom specifically the author was replying to,
communication was made with all participants in the thread. Graphically, this results in a clique
for every thread. We felt this simplification was reasonable; it allowed us to forgo textural
analysis to determine the intended audience of a message post.

 28

Using the PERL scripting language data we extracted from the SourceForge database, we
converted into a social network format Dynamic Network Markup Language (DyNetML) [45].
Once all the data was changed to this format, it was analyzed and visualized using the Dynamic
Network Analysis tool Organization Risk Analyzer (ORA) [46]. The DyNetML is an XML
derivative for representing meta-networks. This language was developed in 2003 by Tsvetovat,
Reminga, and Carley [45]. They saw a growing need for a more robust social network data
representation solution. Aiming to maximize expressivity, compatibility, and interoperability,
they created DyNetML as the new standard in meta-network data representation. In our work, we
use DyNetML to represent extracted OSS social net data and to measure and understand Oss
social network. Using DyNetML also allows the analysis tool (ORA) to easily import the network
data. ORA is primarily purposed as a risk assessment tool for analyzing organizations given
knowledge, social, and task network information.

Figure 18: Social Network Visualization for OSS group (175962) at month 15

6.2 Network Structures Analysis

Preliminary analysis indicates some common relationships between OSS projects and
fundamental dynamic network analysis metrics. There is a characteristic pattern of asymmetric
interaction, where a few core members dominate the activity of the developing team. Many
successful open source projects also display a hierarchical or onion-like organization. In many of
these communities there is a core team of members who contribute most of the code and oversee
the design and evolution of the project. We can identify these core developers by assuming that
members with many social ties have leadership roles in the community. The network analysis of
open source communities revealed the existence of common statistical patterns of social
organization. However, sharing collective properties does not imply the underlying organizations
comprise the same micro interaction mechanisms.

-

 29

Figure 19: A Variety of OSS Developer Social Networks

As shown in Figure 19, there exists a variety of OSS developer social networks. Different

models have been published to explain how the self-organizing behavior of individual actors
affects the emergence of different types of systemic level networks. For example, the preferential
attachment model argues that new entrants to a network prefer to bond to already highly
connected actors, a process that eventuates into a network where many actors have a few ties and
a few actors have many ties. Our experiments also indicate that not all OSS groups match the
preferential attachment model.

Just as neurons interconnect in networks that create structured thoughts beyond the ken of
any individual neuron, so people spontaneously organize themselves into groups to create
emergent organizations that no individual may intend, comprehend, or even perceive. Teams are
assembled because of the need to incorporate individuals with different ideas, skills, and
resources. Self-organized collectives of people create emergent group-level patterns that are
rarely understood or intended by any individual. While existing researchers have learned much
about how networks govern resource allocation, we know relatively little about how networks
emerge. The next step in our research presents our plan for answering these questions.

 30

7. Next Step Research

Modeling Social Network Emergence of Human Community

Previous researches have proved that human social networks (at macro-level) can be
represented as complex self-organizing systems that emerge from the interaction of individual
social behaviors (at micro-level). In the OSS community, there exists a variety of OSS developer
social network structures. Recently, several studies have emphasized the importance of the social
structure of human self-organized systems and the impact that structure has on organizational
performance. However, several questions about the emergence of network structures still exist.
How do systemic-level network structures emerge from local interactions? What local actions
suddenly shift or stabilize the systemic-level network? Why are certain networks remarkably
resilient? While existing researches have learned much about how networks govern resource
allocation, we know relatively little about how networks emerge. The next step in our research
will focus on answering these questions.

In Section 5, we developed and validated an agent based model for predicting OSS group
behaviors such as membership gains/losses, group efficiency, and the occurrence of group-level
actions. In our next step research, we will first examine how the change of individual agent’s
behavior affects the emergence of different types of network structures. We will explain why
some topologies (e.g., small world networks), have high incidence rates relative to other types of
networks as described in Section 6. An agent based social model motivated by previous works on
social network formation will be implemented. We will use social networks of OSS developers
extracted in Section 6 as references and investigate how the choices developers that make in
deciding and contributing their projects determine the global network topology of the entire field.
Our goal is to evolve the OSS social network model into a generic agent based model that may be
able to explain how the self-organizing behavior of individual agents affects the emergence of
different types of systemic level networks. It will also help us understand the self organized
groups’ social network evolution and global network behaviors. The model will be validated at
both the individual level and the macro level to illustrate and test the plausibility of the model’s
theoretical mechanisms.

7.1 Modeling Social Network Emergence of Human Community

 Individual actions can lead to emergent features, visible at the societal or macro level. At
the same time, such features can also influence or constrain individual action. This approach
makes it possible to explore the connection between the micro-level behavior of individuals and
the macro-level patterns that emerge from the interaction of many individuals. By using agent
based simulation, we can effectively describe these behaviors as the actions of agents in an
environment, where the agents are the individuals and the environment is the complex self-
organizing system. It is possible to reproduce social societies into a synthetic environment by
creating “artificial societies” in an agent based simulation.

To experimentally test and refine our team formation model beyond the parameter values
that were fixed in the historical case, we will develop an agent-based simulation to test and
validate the representativeness of our model. With the simulation, we will experimentally
manipulate the parameter values that were fixed in the archival data to investigate whether our
model generalizes to a range of real world cases. The model provides a dynamic team formation
environment where agent teams form spontaneously in a completely decentralized manner and
the agents’ decision making is based solely on local information. This model of collaboration
networks will illustrate how the behavior of individuals in assembling teams for OSS projects can
give rise to a variety of large-scale network structures over time. It is an extension of the team
assembly model presented by Guimera et al., [47]. Guimera et al., argued that many of the

 31

general features found in the networks of creative enterprises can be captured by the team
assembly model with two simple parameters: the proportion of newcomers participating in a team
and the propensity for past collaborators to work again with one another. A key analytical feature
of the team formation model [48] is that it suggests that differences in the types of links rather
than differences in actors’ intrinsic characteristics significantly govern emergence, which enables
us to treat emergence in a novel way. The rules of the model draw upon observations of
collaboration networks from our understanding of the OSS community.

7.2 Self-motivating teams

Considering that the goal of this research is modeling the common social model of self
organized organizations (OSS community and insurgent groups), we proposed a self-motivating
team model. A self-motivating team can be defined as a group of agents being responsible for the
performance of a task, whereas each worker possesses a variety of skills relevant to that task. In
theory, a self-motivating team has the freedom to allocate and perform the task any way the team
likes. Therefore, within self-motivating teams, there must be self-organizing processes. In the
model, tasks are generated periodically and globally advertised to the organization. Agents
attempt to form teams to accomplish these tasks. Since we are only concerned with the formation
process, tasks are generic in that they only require that a team of agents with the necessary skills
form to accomplish the specific task. In this model of team formation, the organization consists of
N agents, A = [a1, a2, . . . , aN], where each agent can be considered as a unique node in the social
network. The network is modeled as an adjacency matrix E, where an element of the adjacency
matrix eij = 1 if there is an edge between agent ai and aj and eij = 0 otherwise. The social
relationships among the agents are undirected, so eij = eji, and for all agents, eii = 0. In the agent
organization, each agent is also assigned a skill matrix K= [k1, k2, …..,kn] to represent the initial
skills of each agent. During the team formation process, each agent can be in different states:
Team member or non-committed developer.

7.3 Stigmergic Model for Distributed Task Allocation

A stigmergic model will be implemented for representing the task coordination within the
self organizing groups. A process is stigmergic if the work done by one agent provides a stimulus
that entices other agents to continue the job [12]. This concept was initially proposed to explain
how a group of dumb, uncoordinated termites manage to build their complex, cathedral-like
termite hills. The basic idea is that a termite initially drops a little bit of mud in a random place,
and because of the heaps that are formed in this way stimulates other termites to add to them
(rather than start a heap of their own), thus making them grow higher until they touch other
similarly constructed columns. The termites do not communicate about who is to do what, how,
or when. Their only communication is indirect: the partially executed work of the ones providing
information to the others about where to make their own contribution. In this way, there is no
need for a centrally controlled plan, workflow, or division of labor.

While people, are of course, much more intelligent than social insects and do
communicate, the OSS development community uses essentially the same stigmergic mechanism:
any new or revised document or software component uploaded to the site of a community is
immediately scrutinized by the members of the community that are interested in using it. When
one member discovers a shortcoming (e.g., a bug, error, or lacking functionality), that member
will be inclined to either solve the problem him/herself, or, at least, point it out to the rest of the
community, where it may again entice someone else to take another look at the problem. The
more high quality material that is already available on the community site, the more people will
be drawn to check it out; thus, the more people are available to improve it further. Open access
can profit from a positive feedback cycle that boosts successful projects. This explains the
explosive growth of systems such as Wikipedia or Linux in the OSS community.

 32

7.4 Project Setup Model
At each tick, a new task with a skill list requirement is posted on a discussion forum. If an

agent has a portion of the skill list the task need, and the agent itself not involve it in any existing
project, the developer agent will have Ps probability to setup a new project. If the agent is
committing to a project, the agent will have Pm probability to add a new function in the existing
project to suit the task need. If there are no new tasks or the agent’s skill is not suitable for the
new task, the agent will consider join in the existing project. Each developer will join a project
based on several elements.

 33

8. Relating the Research to DoD Needs

In 2005, Dr. Robert Popp, Deputy Director of DARPA Information Exploitation Office,

described the new DARPA initiative for dealing with the 21st-century strategic threat as:
 “exploring the innovative quantitative and computational social science methods
and approaches that could enable commanders and analysts to understand and
anticipate the preconditions …. Understanding and countering today’s strategic
threat requires a wide range of nonlinear mathematical and nondeterministic
computational theories and models for investigating human social phenomena”.

Events that have happened in Somalia, Iraq, and Afghanistan indicate that insurgency
remains a significant challenge for the U.S.. Conventional methods are not well-suited for
analyzing the formation and evolution of these insurgent groups. The U.S. military needs new
research into understanding the formation and coordination of enemy insurgent groups, predicting
insurgent group behavior, and developing alternate strategies to defeat them. Currently, most
ongoing work in insurgency warfare simulation is typically concerned with enhancing existing
military capabilities for countering insurgents rather than building a scientific understanding of
the insurgency. In terms of modeling, there does not appear to be any mature or widely used
methodology addressing insurgency warfare. At the same time, the lack of trustworthy insurgency
data makes building and validating such a model a challenge.

In Iraq, the insurgents are a diverse collection of groups including: the Bashthists, the
former regime loyalists associated with Saddam Hussein; the Nationalists, mostly Sunni Muslims
fighting for Iraqi independence; Sunni Islamists, the indigenous armed followers of the Salafi
movement; foreign fighters, largely driven by anti-U.S. feelings and religious doctrine,
symbolized by the Jordanian Al-Qaeda operative, Abu Musab al-Zarqawi; Militant followers of
Shisa Islamist cleric Moqtada al-Sadr; and non-violent groups that resist the foreign occupation
through peaceful means such as the National Foundation Congress. Each group has different
reasons for opposing the U.S. occupation, but all have the same goal of forcing the U.S. to
remove its troops from Iraq. The violent means to this goal are pursued by most of the groups in a
largely decentralized, uncoordinated effort to destabilize the country. Military victory is not a
goal of any of the groups. American military supremacy is close to absolute. The commitment of
each group varies. The primary military goal of groups like Al Qaeda and Ansar al Sunna is not
to win but simply not to lose; to hang on until the U.S. runs out of will and departs.

As we discussed in Section 1, beyond their special features, these insurgent groups may
display some overall patterns of organization similar to the ones seen in other types of self-
organized human groups, such as the OSS community. The OSS community is considered a
complex, self-organizing system. It is comprised of large numbers of locally interacting software
developers. Creation of OSS in this community is considered as a collective action by part-time
software developers creating and maintaining OSS software for different reasons. Our literature
researches have shown that insurgent groups and open source software communities share
statistical organization patterns. Our belief is that models of the OSS community can help us
understand insurgent behavior and make better use of the limited data available. Supporting
validation techniques have been applied in our research to increase confidence in using the OSS
community as an analogous data source for insurgent groups. In our next step research, a
quantitative comparison between insurgent groups and OSS societies will be conducted to
understand the common principles of organization behind them. The resulting particle swarm-
based insurgent group model and simulation will be validated for use in future decision making.

The understanding of the self-organized human organizations can help us develop a
dynamic insurgent model for simulating the social behavior and interactions in insurgent groups
and for understanding the emergence and evolution of these groups. Any model is a

 34

simplification of reality−−this one is not unique. Certain complications like heterogeneity among
insurgent groups, the effect of third party audiences, and other factors known to associate with the
relative rise or decline in numbers of insurgents can be ignored in this ideology model to maintain
the simplicity of the model. We believe that a better understanding of the relationships between
individuals and the responses of complex systems to external stimuli will provide a slight convex
shape to our current COIN method. This proof-of-principle demonstration and research will
enable us to better understand the emergence and evolution of self-organized insurgency groups.
The results from this study will not only shed light on the evolution of insurgent groups, but will
also provide a possible explanation for the formation and evolution of scale-free networks, which
are prevalent in insurgent relationships. Furthermore, this research can provide tools for more in-
depth analysis of how a community of people congregates, interacts, and learns from each other
to form an insurgent group over time.

REFERENCES
1. FILKINS, D., Profusion of Rebel Groups Helps Them Survive in Iraq, in New

York Times. 2005: New York.
2. Marion, R. and M. Uhl-Bien, Complexity Theory and Al-Qaeda: Examining

Complex Leadership. Emergence, 2003. 5(1): p. 22.
3. Wheatley, M.J., Leadership of Self-Organized Networks: Lessons from the War

on Terror. Performance Improvement Quarterly, 2007. 20(2): p. 7.
4. Findley, M. and J. Young, Swatting Flies with Piledrivers?: Modeling

Insurgency, in Meeting of the International Studies Association. 2006: San Diego,
California, USA.

5. Huddleston, S.H., G.P.L. Sr., and J. Fox, Changing Knives into Spoons, in 2008
IEEE Systems and Information Engineering Design Symposium. 2008:
Charlottesville, VA, USA.

6. Epstein, J.M., Modeling civil violence: An agent-based computational approach.
PNAS, 2002. 99(90003): p. 7243-7250.

7. Solé, R.V., et al., Selection, Tinkering, and Emergence in Complex Networks.
Complexity, 2002. 8(1): p. 13.

8. Solé, R.V. and B. Goodwin, Signs of Life: How Complexity Pervades Biology.
2001: Basic Books.

9. Valverde, S., et al., Self-organization patterns in wasp and open source
communities. Intelligent Systems, 2006. 21(2): p. 14.

10. Holland, J., Emergence: from Chaos to Order. 1998: Addison-Wesley.
11. Goldstein, J., Emergence as a construct: History and issues. Emergence, 1999.

1(1).
12. Heyligen, F., .Self-organization, emergence and the architecture of complexity, in

Proceedings of the 1st European Conference on System Science. 1989: Paris.
13. Wolf, T.D. and T. Holvoet, Emergence as a General Architecture for Distributed

Autonomic Computing, in International Workshop on Engineering Self-
Organising Applications 2004.

14. Gilbert, N. and K.G. Troitzsch, Simulation for the Social Scientist. 1999: Open
University Press.

15. GILBERT, N. and R. Conte, Computer simulation for social theory, in Artificial
societies: The computer simulation of social life, N. GILBERT and R. Conte,
Editors. 1995, UCL Press: London.

 35

16. Younger, S., Reciprocity, Normative Reputation, and the Development of Mutual
Obligation in Gift-giving Societies. Journal of Artificial Societies and Social
Simulation, 2004. 7(1).

17. Starbuck, W.H., Organizations and Their Environments, in Handbook of
Industrial and Organizational Psychology, M.D. Dunnette, Editor. 1976, Rand:
Chicago. p. 1101.

18. Schelling, T., Micromotives and Macrobehavior. 1978, New York.
19. Gilbert, N., Social agents: ecology, exchange, and evolution, in Agent 2002. 2002:

Chicago.
20. Helbing, D., J. Keltsch, and P. Molnár, Modelling the evolution of human trail

systems. Nature, 1997. 388: p. 3.
21. Resnick, M., Turtles, Termites, and Traffic Jams: Explorations in Massively

Parallel Microworlds 1997, Cambridge: The MIT Press.
22. Farkas, I., D. Helbing, and T. Vicsek, Social behaviour: Mexican waves in an

excitable medium. Nature, 2002. 419.
23. Santos, G. and B. Aguirre, A critical review of emergency evacuation simulation

models, in Building Occupational Movement during Fire Emergencies Workshop.
2004: Gaithersburg, MD.

24. Axelrod, R., Advancing the Art of Simulation in the Social Sciences, in Simulating
Social Phenomena, R. Conte, R. Hegselmann, and P. Terna, Editors. 1997,
Springer: Berlin. p. 19.

25. Chio, C.D., R. Poli, and P.D. Chio. Modelling Group-Foraging Behaviour with
Particle Swarms. in 9th International Conference Parallel Problem Solving from
Nature. 2006. Reykjavik, Iceland: Springer.

26. Eberhart, R. and J. Kennedy. A new optimizer using particle swarm theory. in
Proceedings of the Sixth International Symposium on Micro Machine and Human
Science. 1995. Nagoya, Japan: IEEE.

27. Clerc, M. The swarm and the queen: towards a deterministic and adaptive
particle swarm optimization. in Proceedings of the 1999 Congress on
Evolutionary Computation. 1999. Washington, DC, USA: IEEE.

28. Clerc, M. and J. Kennedy, The particle swarm-explosion, stability, and
convergence in a multidimensional complex space. IEEE Transactions on
Evolutionary Computation, 2002. 6(1): p. 58-73.

29. Morrison, R.W. and K.A. De Jong. A test problem generator for non-stationary
environments. 1999. Washington, DC, USA: IEEE.

30. Angeline, P.J. Tracking extrema in dynamic environments. 1997. Indianapolis, IN,
USA: Springer-Verlag.

31. Blackwell, T. and J. Branke. Multi-swarm optimization in dynamic environments.
2004. Coimbra, Portugal: Springer-Verlag.

32. Blackwell, T.M., Particle swarms and population diversity. Soft Computing,
2005. 9(11): p. 793-802.

33. Parsopoulos, K.E. and M.N. Vrahatis, Recent approaches to global optimization
problems through particle swarm optimization. Natural Computing, 2002. 1(2-3):
p. 235-306.

34. Tisue, S. NetLogo: A Simple Environment for Modeling Complexity. in
International Conference on Complex Systems. 2004. Boston, MA.

 36

35. Xu, J., Y. Gao, and G. Madey. A Docking Experiment: Swarm and Repast for
Social Network Modeling. in Seventh Annual Swarm Researchers Meeting
(Swarm2003). 2003. Notre Dame, IN.

36. Bankes, S., Exploratory Modeling for Policy Analysis. Operations Research,
1993. 41(3): p. 435-449.

37. Sargent, R.G. Verification and Validation of Simulation Models. in Proc. 2003 of
Winter Simulation Conference. 2003. New Orleans, Louisiana.

38. Macal, C.M. and M.J. North, Validation of an Agent-Based Model of Deregulated
Electric Power Markets, in North American Association for Computational and
Social Organization (NAACSOS) Conference. 2005: Notre Dame, Indiana.

39. Axtell, R., et al., Aligning simulation models: a case study and results.
Computational and Mathematical Organization Theory, 1995. 1(2): p. 18.

40. Moss, S. and B. Edmonds, Sociology and Simulation: Statistical and Qualitative
Cross-Validation. American Journal of Sociology, 2005. 110: p. 37.

41. moss, S., Alternative Approaches to the Empirical Validation of Agent-Based
Models. Journal of Artificial Societies and Social Simulation, 2007. 11.

42. Fagiolo, G., A. Moneta, and P. Windrum, A critical guide to empirical validation
of agent-based economics models: Methodologies, procedures, and open
problems. Computational Economics, 2007. 30(3): p. 31.

43. Midgley, D.F., R.E. Marks, and D. Kunchamwar, Building and assurance of
agent-based models: an example and challenge to the field. Journal of Business
Research, 2007. 60(8): p. 9.

44. Christley, S. and G. Madey, Collection of Activity Data for SourceForge Projects.
2005, Dept. of Computer Science and Engineering, University of Notre Dame:
Notre Dame, IN.

45. Tsvetovat, M., J. Reminga, and K. Carley, DyNetML: Interchange Format for
Rich Social Network Data, in NAACSOS Conference 2003. 2003: Pittsburgh, PA.

46. Carley, K. and J. Reminga, ORA: Organization Risk Analyzer. 2004, Carnegie
Mellon University, School of Computer Science, Institute for Software Research
International.

47. Guimera, R., et al., Team Assembly Mechanisms Determine Collaboration
Network Structure and Team Performance. Nature, 2005. 308(5722): p. 5.

48. Uzzi, B., et al., Emergence: The Dynamics of Network Formation, in Annual
meeting of the American Sociological Association. 2006: Montreal Convention
Center, Montreal, Quebec, Canada.

