
Parallel Latent Semantic Analysis using a Graphics
Processing Unit

Joseph M. Cavanagh
∗

Division of Science and
Mathematics

University of Minnesota -
Morris

Morris, Minnesota 56267
cava0093@umn.edu

Thomas E. Potok
Computational Sciences &

Engineering Division
Oak Ridge National

Laboratory
Oak Ridge, Tennessee 37831

potokte@ornl.gov

Xiaohui Cui
†

Computational Sciences &
Engineering Division
Oak Ridge National

Laboratory
Oak Ridge, Tennessee 37831

cuix@ornl.gov

ABSTRACT
Latent Semantic Analysis (LSA) can be used to reduce the
dimensions of large Term-Document datasets using Singu-
lar Value Decomposition. However, with the ever expand-
ing size of data sets, current implementations are not fast
enough to quickly and easily compute the results on a stan-
dard PC. The Graphics Processing Unit (GPU) can solve
some highly parallel problems much faster than the tradi-
tional sequential processor (CPU). Thus, a deployable sys-
tem using a GPU to speedup large-scale LSA processes would
be a much more effective choice (in terms of cost/performance
ratio) than using a computer cluster. In this paper, we pre-
sented a parallel LSA implementation on the GPU, using
NVIDIArCompute Unified Device Architecture (CUDA)
and Compute Unified Basic Linear Algebra Subprograms
(CUBLAS). The performance of this implementation is com-
pared to traditional LSA implementation on CPU using an
optimized Basic Linear Algebra Subprograms library. For
large matrices that have dimensions divisible by 16, the GPU
algorithm ran five to six times faster than the CPU version.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—performance mea-
sures

General Terms
Algorithms, Performance

∗The first author conducted the research at Oak Ridge Na-
tional Laboratory under the support of the Department of
Energy’s Student Undergraduate Laboratory Internship pro-
gram
†Correspond author

Copyright 2009 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
GECCO’09, July 8–12, 2009, Montréal Québec, Canada.
Copyright 2009 ACM 978-1-60558-325-9/09/07 ...$5.00.

Keywords
GPU, Text Mining, Latent Semantic Indexing

1. INTRODUCTION
With the large amount of data being collected annually,

methods are needed to extract valuable information from
this data [1]. Latent Semantic Analysis is a numerical tech-
nique used to extract information from large collections of
text documents [2, 3]. These document collections often con-
tain more than 10,000 unique documents and 5,000 unique
terms. LSA is employed on these collections in order to
find relationships between various terms, sentences, and full
documents. LSA works by taking the SVD of A where
A = D ∗ DT , with D being the term-document matrix.
The term document matrix is created before hand, using
a term weighting and text stripping algorithm such as Term
Frequency Inverse Document Frequency (TFIDF) [13]. The
core of the SVD algorithm requires an eigen decomposition
of the matrix, which has been a computational problem for
many decades [2, 5, 6, 10]. This makes SVD a computa-
tionally expensive algorithm which makes it a prime candi-
date for decreasing processing times [2, 5, 10]. During the
SVD process, many modern methods tridiagonalize A be-
fore computing the SVD due to the performance increase
between calculating SVD on a normal matrix and a tridiag-
onal matrix [2, 5, 6, 14]. A tri-diagonal matrix is a matrix
with values only in its main diagonal, one element above
the main diagonal, and one element below the main diago-
nal. All other elements in the matrix are set to zero. This
step takes up a large portion of the time for computing the
SVD and will be the main focus of our parallel algorithm.

Recently, the GPU has become a focus for inexpensive,
high performance computing in various scientific fields [9].
The GPU serves as a specialized processor that is tailored to
make extremely fast graphics calculations. Demands for in-
creasingly realistic visual representations in simulation and
entertainment have driven the development of the GPU.
As is evident in figure 1, the most recent generation of
NVIDIArGPU has a theoretical performance much greater
than the current top-of-the-line desktop CPU (the Intel Core
i7-965 Extreme Edition). This difference arose because the
evolution of the GPU has centered on highly parallel, com-
putationally intensive calculations rather than data caching
and flow control [8]. The immense computational power

of the GPU was noticed by developers, and a move to ex-
ploit this power was made. A community of general-purpose
GPU programmers (www.gpgpu.org) quickly arose and pi-
oneered programming on the GPU. Due to the architecture
of the GPU, it is able to perform floating point calculations
much faster than a standard CPU, due to the massive paral-
lelism in the GPU [9]. We performed the CPU benchmarks
using SiSoftwarerSandra, a program for benchmarking var-
ious computer components. An Intel Core i7-965 Extreme
Edition CPU costs around $1000 and produces 69GFLOPS
(GFLOP, equal to one billion floating point operations per
second). An NVIDIAr1GB memory GTX 280 costs around
$350 and produces around 900 GFLOPS. The price to per-
formance ratio for the CPU is 0.069 GFLOPS/dollar, while
the GPU price to performance ratio is 2.66 GFLOPS/dollar.
The impressive price to performance ratio of the GPU makes
it a prime candidate for increasing the speed of LSA, while
still using components found in many desktop and laptop
personal computers.

Figure 1: Floating-Point Operations per Second for
the CPU and GPU [8]

Due to the GPU’s application-specific architecture, har-
nessing the GPU’s computational prowess for LSA is a great
challenge. Memory transfer from system memory to GPU
memory (host to device and device to host) remains rela-
tively slow and can often be a bottleneck in the applications.
Most current GPUs offer support for only single precision,
while many scientific applications require double precision
support. Also, certain algorithms are primarily serial, pro-
hibiting much of the GPU’s processing power from being uti-
lized. For each of these problems a solution must be found.
Currently, the effect of slow memory transfer can be mini-
mized by performing as many GPU based computations as
possible between CPU memory to GPU memory transfer.
Transferring large amounts of data at one time is generally
faster than making numerous small memory transfers. Dou-
ble precision can be either emulated by an algorithm or can
be obtained by purchasing a new NVIDIAr200 series GPU.

2. RELATED RESEARCH
Our literature research shows that currently there is very

limited researches in GPU based implementation of LSA.
The related research includes: A team at the University of
North Carolina at Chapel Hill used a GPU based algorithm
for solving dense linear systems [4]. Their implementation of
an LU decomposition algorithm performed 35% better than
an ATLAS (Automatically Tuned Linear Algebra Subrou-
tines) implementation on the CPU, for matrices of size 3500.

Manavski and Valle have implemented the Smith-Waterman
algorithm on the GPU [7]. The Smith-Waterman algorithm
explores alignments between two sequences in protein and
DNA databases. Their implementation ran between 2 and
30 times faster than other implementations for commodity
hardware. Another example of the power of the GPU is
given in [12]. They used the GPU to implement ray tracing
algorithms and then compared the results to implementation
on a CPU. In an animated example, the GPU performed
around 6 times better than the CPU. These examples show
that the GPU is a powerful tool that when used correctly
can be used to increase the speeds of a variety of algorithms
in a variety of fields.

3. MATERIALS AND METHODS
For our implementation, we decided to use a Lanczos al-

gorithm to assist with the SVD. The Lanczos algorithm
tridiagonalizes a matrix which allows for the computation
of SVD to be performed significantly faster [6]. This is done
by using various matrix-vector and vector-vector operations
in order to achieve a Krylov subspace. This subspace is a
representation of the original matrix and maintains approx-
imate eigenvalues and eigenvectors to that of the original
matrix. The reason we chose Lanczos is that the only com-
putationally expensive part of the algorithm is a matrix-
vector multiplication. The algorithm can be seen in figure
2. The vector alpha is then used to form the main diagonal
of the new matrix, where the vector beta will form the sub-
diagonal and superdiagonal. This algorithm is proven to be
accurate in an environment without rounding errors. How-
ever, due to the fact that our GPU supports single precision,
rounding errors are inevitable. Maintaining accuracy while
using the GPU will be discussed more in the Discussion and
Conclusion section.

Our GPU implementation uses CUBLAS to perform the
matrix-vector and vector-vector operations that our algo-
rithm requires. CUBLAS is a CUDA implementation of
BLAS which has been tuned to provide good performance
across a variety of GPUs. To avoid bias, we compare our
performance with that of a tuned CPU BLAS library. The
linear algebra routines from the BLAS libraries used in both
the CPU and GPU implementations were identical, with the
only difference being the algorithmic designs each version
used in order to extract performance out of their respec-
tive architectures. The main linear algebra routines used
are sgemv, saxpy, sdot and snrm2. These routines are fre-
quently used basic linear algebra functions that were de-
veloped to provide building blocks for larger applications. If
A = D∗DT with D representing the term-document matrix,
only A needs to be stored in memory on the GPU, along with
a few vectors which are a fraction of the data size that D is.
This is very advantageous, as the memory on a GPU card
can be a very limiting factor. The card used for our test-
ing has 1GB of memory, which allows us to allocate about
950MB to use in our program. The extra memory which
can not be allocated is due to a process behind the scenes
preventing full allocation. The CUDA community currently
regards this as a bug as it is unclear why this much memory
is reserved for other uses. With 950MB of usable memory,
we are able to allocate matrices that exceed 15000x15000.
This is well within the matrix size that we are targeting our
algorithm for.

After implementing the CPU and GPU based algorithm,

we timed each implementation for various matrix sizes. The
computer testing the implementations has the following spec-
ifications: Dual 3.6 GHz Intel Pentium 4 CPUs, 3.00 GB of
RAM, NVIDIAr8800gt with 1 GB device memory, 160GB
hard drive. Matrix sizes were selected in an interval thought
to clearly display the performance of each implementation.
For each matrix size, three randomly generated matrices
were used. For each of the three matrices, both CPU and
GPU versions are run five times and the total time is av-
eraged. This produces fifteen total runs for both the CPU
and GPU at every matrix size interval. The times are then
averaged for display purposes.

4. RESULTS
Our initial results can be seen in figure 3, which is for

matrices up to 4000 x 4000. These initial results show a
performance increase of two to six times. Figure 4 shows
the average CPU and GPU run times for matrices that have
dimensions divisible by 16. The tests were performed in
the same manner as the original tests, with the only change
being the matrix sizes. The GPU in this scenario is able to
process the data between 4 times faster for a 1600 x 1600
matrix up to almost 7 times faster for a 5600 x 5600 matrix.

The CPU version takes about twice as long for the major-
ity of matrices 1000 x 1000 and larger. For matrices smaller
than this, the speed increase is less noticeable. For extremely
small matrices (smaller than 600 x 600) the CPU version is
faster than the GPU version. The reasoning for this is that
using the GPU requires significant constant overhead, which
can comprise a large percentage of the timings [9]. When
matrix sizes are increased, the percentage of the total time
that the overhead consumes is decreased. This is because the
overhead time does not change, but the amount of compu-
tation being done significantly increases. Even for matrices
near the high end of our selected sizes, the GPU seems to
not be more than around twice as fast, except for a select
few matrices.

Figure 2: Test results for increasingly large matri-
ces, up to 4000 x 4000

5. DISCUSSION
In our experiments, some select few matrices seem to be

performing significantly better than average. These select
few matrices all have one thing in common: The matrix
dimensions are all divisible by 16. The reason behind the

Figure 3: Test results for increasingly large matrices
with dimensions divisible by 16, up to 5600 x 5600

significant speed increase lies in the architecture of the GPU.
When the matrix is not divisible by 16, there are conflicts
in shared memory regarding multiple threads accessing the
same bank at the same time. This forces one thread to be
put in a queue while the other thread is accessing the mem-
ory, increasing the amount of time for all memory accesses
to be completed. This can be solved by using matrices with
dimensions divisible by 16. CUBLAS will as a result pro-
vide coalesced memory access patterns, reducing time of the
overall function greatly. This was not aware to us until after
obtaining the results in fig. 3, which lead us to further test
the implementations to verify this issue in fig. 4. It should
be noted that the overall speeds for the CPU version did not
vary from relative normal when the matrix dimensions were
divisible by 16.

After testing our algorithm, it became evident what areas
needed further research in order to produce an effective, fully
implementable algorithm. The first area to be addressed is
the accuracy of the algorithm. Currently, spurious eigen-
values and their resulting vectors are being created due to
rounding errors. These are generated during the tridiago-
nalization process [6, 11, 14]. Two methods may be used in
this situation. Either the spurious values can be removed
after computation or reorthogonalization can be performed
during computation [11, 14]. Removing spurious values af-
ter computation, while technically possible, is thought to
be less effective than reorthogonalization. Reorthogonaliza-
tion is the process of ensuring that the generated vectors are
an accurate sub-space representation of the original matrix.
For this reason, we will aim to implement partial reorthog-
onalization. Partial reorthogonalization has been proven to
be able to preserve semiorthogonality [10, 14]. Partial re-
orthogonalization would allow us to stop our iteration se-
quence shorter than a simple Lanczos algorithm. These rea-
sons make a partial reorthogonalization method necessary
in a fully implementable LSA algorithm.

Another area of interest in future research would be fur-
ther increases in the speed of the algorithm. Currently the
GPU is only being used for the tridiagonalization computa-
tion. However the sstev BLAS routine, which computes the
eigenvalues and eigenvectors of a tridiagonal matrix, is still
being implemented on the CPU. Transitioning this to the
GPU should further increase the performance of the algo-

rithm. The percentage of the total computation time that
sstev occupies is only around 5% (for a 4000 x 4000 ma-
trix). As matrix sizes grow, the total time that sstev re-
quires will also grow, making a GPU version of the routine
highly useful. This is especially true if the matrix sizes are
approaching 10000 x 10000. Also, improvements upon the
CUBLAS sgemv routine, which is a matrix-vector multipli-
cation routine, would greatly increase performance as 90%
of the GPU computation time is being occupied by this rou-
tine. This is entirely feasible as CUBLAS is not stated as
being the optimal implementation.

A final area of research would be to attempt to imple-
ment the algorithm on a multiple GPU machine. Currently,
in order to use multiple GPU’s the algorithm must explicitly
state how to use the GPUs. There is no automatic optimiza-
tion allowing the use of multiple GPUs. For this reason, code
needs to be modified for each individual problem. The use
of multiple GPUs would be highly beneficial, as numerous
computers are being released with multiple graphics cards
built in. Even laptops are able to be ordered with multiple
GPUs. Adding multi-GPU functionality can be tricky and
does not always increase the speed of the code. This is due
to the fact that there is very little effective communication
done between GPUs. This makes sharing computation of
problems very difficult. This is evident when computing a
matrix-matrix product. In order to complete the computa-
tion, a GPU must have each matrix in its global memory.
This adds a lot of increased overhead, as copying memory be-
tween GPUs currently requires to copy the data from GPU1
to the computer’s memory then to GPU2. This is very slow
and limits the effectiveness of multi-GPU implementation.
Ideally, one GPU could send out small pieces of data for the
other GPU(s) to compute. If this could be achieved, the full
computational power of all GPUs could be utilized without
worrying very much about transfer times. Achieving this
level of performance is as much a hardware issue as it is a
software issue, so our current implementation would require
explicit declarations inside of the code.

6. CONCLUSIONS
In this research, we developed a parallel latent semantic

analysis algorithm for the GPU. The results of our tests are
very promising. The speed increase of the GPU based algo-
rithm was 5-7 times for matrices with dimensions divisible
by 16 and 2 times for matrices of other sizes. One solution
to ensuring that all matrices have dimensions divisible by
16 is to add extra columns and rows of zeros to the ma-
trix. The number of rows and columns to add would be
equal to x%16 where x is equal to the dimension size of the
matrix. This number would always be between 1 and 15,
requiring minimal computation time when adding this data.
We hypothesize that adding these rows and columns would
not add a noticeable increase to computation time and thus
would still yield a speed increase of 5-7 times. With the
GPU being so widespread in modern PC’s, this algorithm is
not just limited to expensive custom ordered workstations.
Most mid range computers currently come with a graphics
card, including laptops. This makes it possible to perform
GPU-based LSA on a mobile computer. That being said, a
top of the line desktop computer would be expected to see
even better results. Currently, the NVIDIAr280GTX has
a theoretical computation level of about 933 gflops. This
is more than twice that of the card we used and costs ap-

proximately 40% more. With GPU computational power
increasing at a higher rate than CPU computational power,
it is very possible to see increased speed results in the near
future [9]. We have shown that the GPU can be used to pro-
vide a performance increase to our algorithm. This should
not only be useful to us, but provide evidence to further
algorithmic development on the GPU.

7. ACKNOWLEDGMENTS
This research was done at Oak Ridge National Labora-

tory as part of the Department of Energy’s Student Un-
dergraduate Laboratory Internship program. Oak Ridge
National Laboratory is managed by UT-Battelle LLC for
the US Department of Energy under contract number DE-
AC05-00OR22725. This work was supported in part by the
Energy’s Student Undergraduate Laboratory Internship pro-
gram, Office of Naval Research (N0001408IP20066) and Oak
Ridge National Laboratory Seed Money fund (3210-2276).
The views and conclusions contained in this document are
those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of
the Oak Ridge National Laboratory, the Office of Naval Re-
search, the Department of Energy or the U.S. government.

8. REFERENCES
[1] N. Adams, G. Blunt, D. Hand, and M. Kelly. Data

mining for fun and profit. Statistical Science,
15(2):111–131, 2000.

[2] M. Berry. Large-scale sparse singular value
computations. The International Journal of
Supercomputer Applications, 6(1):13–49, 1992.

[3] S. Dumais, G. Furnas, T. Lanerwester, ,
R. Harshmandauer, S. Deerwester, and R. Harshman.
Using latent semantic analyses to improve access to
textual information. In Proceedings of the SIGCHI
conference on Human factors in computing systems,
Washington, D.C., United States, May 1988.

[4] N. Galoppo, N. Govindaraju, M. Henson, and
D. Manocha. Efficient algorithms for solving dense
linear systems on graphics hardware. In Proceedings of
the 2005 Coordinated and Multiple Views in
Exploratory Visualization Conference, Washington,
D.C., United States, March 2005.

[5] H.-P. Kersken and U. Kuster. A parallel lanczos
algorithm for eigensystem calculation. Technical
Report 310, University of Stuttgart, 1999.

[6] C. Lanczos. An iteration method for the solution of
the eigenvalue problem of linear differential and
integral operators. J. Res. Natl. Bureau Stand.,
45(1):255–282, 1950.

[7] S. Manavski and G. Valle. Cuda compatible gpu cards
as efficient hardware accelerators for smith-waterman
sequence alignment. BMC Bioinformatics, 9(2), 2008.

[8] Nvidia. Cuda:compute unied device architecture.
Technical Report 2, NVIDIA, 2008.

[9] J. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Kruger, A. Lefohn, and T. Purcell. A survey of
general-purpose computation on graphics hardware.
Computer Graphics Forum, 26(1):80–113, 2007.

[10] C. Paige, B. Parlett, and H. V. der Vorst.
Approximate solutions and eigenvalue bounds from

krylov subspaces. Numerical Linear Algebra with
Applications, 2(2):115–134, 1995.

[11] B. Parlett and D. Scott. The lanczos algorithm with
selective orthogonalization. Mathematics of
Computation, 33(145):217–238, 1979.

[12] P. Robert, S. Schoepke, and H. Bieri. Hybrid ray
tracing - ray tracing using gpu-accelerated
image-space methods. In Proceedings of the 2007
International Conference on Computer Graphics
Theory, pages 305–311, Barcelona, Spain, 2007.

[13] G. Salton and C. Buckley. Term-weighting approaches
in automatic text retrieval. Information Processing &
Management, 24(5):513–523, 1988.

[14] H. Simon. The lanczos algorithm with partial
reorthogonalization. Mathematics of Computation,
42(165):115–142, 1984.

