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Abstract - Modern enterprises are becoming 
increasingly sensitive to the potential destructive power 
of small groups or individuals with malicious intent.  In 
response, significant investments are being made in 
developing a means to assess the likelihood of certain 
threats to their enterprises.  Threat assessment needs are 
typically focused in very specific application areas where 
current processes rely heavily on human analysis to both 
combine any available data and draw conclusions about 
the probability of a threat. A generic approach to threat 
assessment is proposed, including a threat taxonomy and 
decision-level information fusion framework, that 
provides a computational means for merging multi-modal 
data for the purpose of assessing the presence of a threat. 
The framework is designed for flexibility, and 
intentionally accounts for the accuracy of each data 
source, given the environmental conditions, in order to 
manage the uncertainty associated with any acquired 
data.  The taxonomy and information fusion framework is 
described, and discussed in the context of real-world 
applications such as shipping container security and 
cyber security. 

Keywords: Information fusion, threat assessment, 
Bayesian belief networks, data analysis, threat signatures. 

1 Introduction 
 As enterprises are forced to account for the threats 
posed by the tactics of small, subversive groups or 
individuals, they are becoming more aware of the 
vulnerabilities in their infrastructures.  In the freight 
industry, for example, the high demand for speed in 
moving goods internationally inhibits an organization’s 
ability to take the time to thoroughly inspect shipping 
container contents [1].  As a result, shipping containers 
present an opportunity for a small group or individual to 
pose a significant threat.  Similarly, the volume of 
enterprise-level Internet traffic, coupled with the lack of 
scalable data analysis tools, prevents an organization from 
thoroughly analyzing its network transactions.  The high 
business demand for Internet availability often forces 

organizations to expose their critical and sensitive 
information resources to the threat of unauthorized access.  

 Threat assessment is a means to quantify the risk 
associated with process or system vulnerabilities.  Often, 
threat assessment is applied in cases where the 
vulnerability cannot be adequately addressed due to 
limitations in resources or the intractability of a thorough 
analysis.  The goal of threat assessment is to provide 
decision support so that a human operator can reliably 
identify the presence of a threat and take corrective 
actions.  Threat assessment provides a more thorough 
understanding of the likelihood of a threat, given the 
current conditions.  It is different from threat prediction 
where the future threat potential is forecasted.  Rather it 
provides a threat quantification given the current 
conditions or state of the environment, and makes no 
claims about the future state of the environment. 

 In the freight example, it is desirable to quantify the 
level of confidence that a shipped container’s contents 
pose no threat to various personnel, resources, or 
customers. By understanding the risk, a human operator 
may elect to route a smaller, more manageable number of 
shipping containers to a manual inspection station based 
on the threat likelihood.  In the cyber security example, it 
is helpful to know the likelihood that your enterprise is 
under a cyber attack, given the current conditions.  A 
human operator can take the necessary actions to respond 
to the potential threat, once it has been identified.  

 This research addresses the need for a technology 
that can combine information from disparate data sources 
in order to provide an automated and reliable threat 
assessment.  We propose an information fusion 
framework that is generic in its structure, but specific in 
its data.  The goal of this framework is to provide a means 
for combining data for threat assessment in a variety of 
domains.  Information is fused at the decision level, after 
the data has been acquired and analyzed in order to 
extract the relevant features.  As such, the proposed 
framework can support many modes of raw data, 
including textual data, numeric data, and image data; 



provided that analysis technologies exist that can 
highlight those features that are of interest.  The goal of 
this research is to merge the relevant features, revealed 
during data analysis, to provide an accurate threat 
assessment. 

 Section 2 provides a summary of the related work in 
this field.  Section 3 describes in detail the methodology 
used in creating and applying the information fusion 
framework.  Section 4 outlines the application of this 
framework to the domains of shipping container security 
and cyber security.  Section 5 concludes the paper. 

2 Related Work 
 Information fusion (IF) is defined as the 
combination of data from disparate sources to produce an 
outcome that is superior to any provided by an individual 
source.  A superior outcome typically includes an 
improvement in accuracy, higher confidence through 
complementary information, or improved performance in 
the presence of countermeasures [7].  

 IF can occur on multiple levels [12].   Sensor-level 
fusion is the level at which relevant data is extracted from 
the source signal.  Feature-level fusion is the combination 
of data to produce a composite feature vector that 
characterizes the object under test.  Decision-level fusion 
is the layer that provides a projection of a future state of 
the object based on the feature vector provided, and is the 
information presented to an operator to facilitate a human 
decision.  Related to these different levels, Dasarathy [13] 
characterized IF in terms of the input/output 
characteristics of a given fusion function: Data in-Data 
out, Data in-Feature out, Feature in-Feature out, Feature 
in-Decision out, and Decision in-Decision out.  Thus, an 
IF architecture is simply the combination of these 
different types of fusion functions to produce a holistic 
decision support IF system. 

 The Joint Directors of Labs (JDL) have developed 
the most prominent model of information fusion.  The 
JDL fusion model and its revisions [6][10][11] focus on 
maximizing the automation of fusion.  It breaks data 
fusion into five levels, each of which further refines the 
data from the acquired state to a form that both adequately 
represents the entities and their environment and is 
actionable. Much of the literature surrounding IF focuses 
on the various levels of the JDL model to create and 
optimize algorithms that merge sensor data in a complex 
and dynamic space.  Automated target location, 
identification, and tracking are central themes in this type 
of fusion. 

 Situational awareness (SA) is an extension of IF 
which focuses on incorporating human decision-making 
in the IF process. Endsley’s model of SA [9] defines three 

levels that include Perception of the various relevant 
elements in the environment, Comprehension of the 
patterns that are recognized through analysis or 
evaluation, and Projection of the likely future states based 
on the understanding of the current state. The levels 
proposed in the SA model are analogous to the sensor, 
feature, and decision levels described in [12].  SA systems 
are by design semi-automated and allow for a Human in 
the Loop (HIL) to make decisions. 

 The application of information fusion and situational 
awareness to threat assessment is prevalent in the 
literature.  The identification of targets in a battle space 
[14][16], threat assessment for cyber attacks [17][18], and 
automobile collision avoidance [19] are a subset of 
domains where IF and SA have been applied to assess 
threats. The information fusion approaches applied to 
these problems are varied, and include technologies such 
as neural networks, fuzzy logic, Bayesian belief networks, 
and more traditional statistics.  These are the various 
means by which data can be combined.  

 There have also been several approaches to generic 
information fusion frameworks for threat assessment.  
Generic frameworks are typically both an organization of 
the threat assessment data and a complementary means to 
combine the data.  In addition, generic frameworks 
typically address multiple levels in the JDL model.  
Steinberg [15] proposed a generic model for identifying 
and predicting threat situations that combined the 
application of hypotheses, threat prediction, threat 
assessment and consequence assessment.  The model 
focused primarily on the ontological relationships 
between entities associated with a perpetrator’s capability, 
opportunity, and intent in order to quantify the threat 
potential.  Benavoli, et al, [20] defined an approach to 
threat assessment that merges/marginalizes available data 
using evidential networks.  Their approach centered on 
the use of valuation-based systems as a generic 
framework for uncertainty management.  Although the 
focus of the work was its application to battlespace 
situation assessment, the approach could be easily adapted 
to other domains.  

 This research builds on these prior approaches to 
information fusion for threat assessment.  We focus on the 
decision-level (JDL Level 3) of information fusion for 
threat assessment.  The proposed framework centers on a 
taxonomy of threat data that captures the signatures of a 
given threat and the observables that reveal the presence 
of the signatures.  The application-specific structure of the 
taxonomy is represented in the structure of the 
probabilistic model that assesses the likelihood of a threat.  
The model accounts for the uncertainty associated with 
the acquisition of data and the detection of threat 
observables. To our knowledge, no work has been done to 



provide a decision-level fusion model that characterizes 
threat data or assesses threat likelihood in the same way. 

3 Methodology 
 This section describes the technical approach to 
applying a decision-level information fusion framework to 
the problem of threat assessment.  In Section 3.1, we first 
describe our assumptions about the underlying data being 
fused in the framework.  These may also be viewed as the 
initial conditions that must be satisfied in order to apply 
the framework.  Section 3.2 describes the threat taxonomy 
that we propose to dissect each threat into smaller, more 
manageable questions to analyze and answer. Section 3.3 
describes the architecture of the information fusion 
framework and Section 3.4 details the methods used to 
form the probability network that implements the threat 
assessment taxonomy. 

3.1 Assumptions/Initial Conditions 

As the proposed information fusion framework operates at 
a level above data acquisition and feature extraction, 
assumptions must be made about the data acquired that is 
to be fused in terms of both its nature and structure.  The 
following assumptions must hold in order to apply this 
decision-level fusion framework: 

 Raw data has been acquired: 
This approach assumes that the raw data has 
been acquired and has been translated into an 
analyzable form (e.g., images, measurements). 

 Feature extraction has been performed: 
It is assumed that data-specific processing and 
analysis has been performed on the raw data to 
extract the relevant features.  This may include 
shape detection for images, or document 
similarity for raw text. 

 Features can be expressed as discrete values: 
This framework assumes that all relevant 
features can be sufficiently expressed in either 
the nominal or ordinal scales. 

All of these conditions/assumptions must hold in order to 
effectively use the proposed approach. 

3.2 Threat Taxonomy 

 In order to assess the likelihood that a given threat 
exists, an entity-relationship framework must be in place 
that can adequately characterize the threat.  Typically, the 
approach is to decompose the threat into smaller more 
easily quantified elements, which, when combined, form a 
characterization of that threat. The challenge in 

establishing such a representation is to discriminate those 
factors that reliably identify the presence of a threat.   

 There is a temptation to incorporate a variety of 
factors in threat characterization that are intuitive, but 
have little relevance in a threat assessment.  For example, 
the intent of a perpetrator seems logical to incorporate in 
to a threat assessment model.  However, intent is a very 
abstract concept and a difficult variable to reliably assess.  
We chose to ignore the more abstract attributes of threat 
assessment.  Instead, we focus on characterizing threats in 
terms of their more tangible properties.  That is, we seek 
concrete observables that are mapped to more tangible 
signatures, attributes, or properties associated with the 
threat.  By focusing solely on observables, we eliminate 
the error associated with inferring the states of abstract 
and subjective variables. 

 Figure 1 depicts the different entities associated with 
threat assessment and the relationships between those 
entities.  The proposed taxonomy consists of a high-level 
threat that is composed of one or more threat signatures.  
A threat signature is an attribute or property of the threat 
that is detectable.  A threat observable is an embodiment 
of the threat signature that reveals the presence of the 
signature.  While the terms signature and observable are 
more typically associated with the physical characteristics 
of an object, we extend this language to include non-
physical observables as well.  In threat assessment, the 
detection of an observable such as the frequency of a 
term/phrase in a collection of documents may be as 
significant as detecting the density of a material. Both the 
physical and non-physical signatures of threats are treated 
equally in the threat taxonomy.  Its structure does not 
attempt to convey significance of each threat signature, as 
that is handled through the Threat Assessment Engine 
(see Section 3.4). 

 

Figure 1. Threat taxonomy entities and relationships. 

 To illustrate the concept of signatures and 
observables in threat assessment, consider an example.  In 
cargo container processing, the presence of unauthorized 
explosive materials is a driving concern.  Scanning 
technologies are commonly applied to identify explosive 
materials that may be a threat.  The “Explosives” threat in 



this application can be represented as the collection of 
properties, or signatures, associated with explosives, such 
as the shape or density of common explosive materials. 
Each of these signatures is further described in terms of 
the observable that distinguishes whether the signature 
has been detected.  For example, in the case of the 
“Explosives Shape” signature, the observable would be 
whether the image analysis software identified an object 
within the container that has a shape consistent with that 
of a commercially available explosives device. 

 Since this research is focused on the concrete 
observables associated with a threat, it must consider the 
reliability of the detection method associated with an 
observable, and how the method’s ability to detect the 
observable is affected by the threat environment.  
Continuing with the example of detecting explosive 
materials in shipping containers, consider the approaches 
to detecting explosives material in shipped containers.  
One detection method for the explosive shape might be a 
Computed Tomography (CT) scan.  However, the 
accuracy and resolution of CT scans are highly dependent 
on the size and density of the container.  Thus, it is 
valuable to capture these dependencies in the taxonomy in 
order to manage the uncertainly associated with detecting 
observables. 

 Note the flexibility of this taxonomy.  Each threat is 
comprised of one or more signatures, which are distinct 
characteristics of the threat that may be observed, with 
some degree of uncertainty, by a detection method. This 
structure allows for the easy addition of signatures, 
observables, or detection methods to strengthen the body 
of evidence associated with the threat.  The 
characterization of a threat is limited only by the detection 
methods available for the given signature. It should be 
noted that the detection of observables is accomplished 
through an appropriate data analysis or feature extraction 
method performed during the lower levels of data fusion, 
and is not addressed in this document. 

3.3 Fusion Architecture 

 This research assumes the availability of multi-
modal, multi-source data for reliable threat assessment 
through the proposed decision-level fusion framework. 
Any system that incorporates multiple approaches to 
acquiring and analyzing data must also have an approach 
for merging the results of those independent analyses in 
order to present a consistent assessment to an operator.  
The information fusion system designed for this research 
assumes the existence of a support framework that 
includes acquisition of data from documents, 
measurement and/or scanning devices (Sensor-level 
fusion), and the analysis of the acquired data item to 
produce a set of relevant features (Feature-level fusion).  
Information is fused at a high level and incorporates the 

various features uniquely produced for each data source 
as depicted in Figure 2. 

 This architecture is based on Endsley’s model of SA 
[9] with stages for Perception, Comprehension, and 
Projection.  The focus of this work is the Projection stage 
– using extracted feature sets to predict the presence of a 
threat through decision-level information fusion.  As data 
is acquired from the various data sources, knowledge 
becomes available through feature extraction and is added 
to the body of evidence for assessing any potential threats. 

 

 

Figure 2. Information fusion architecture.  

 
3.4 Threat Assessment Engine 

 Determining the probability of a given threat 
requires representing the threat signature and observable 
taxonomy described in Section 3.2 in a mathematical 
framework such that the detected observables affect the 
likelihood that the threat exists.  We call this framework 
the threat assessment engine.  In addition, any probability 
model for threat assessment must tolerate data that is 
uncertain or unavailable.  For example, a practical 
scenario in cyber security threat assessment is one where 
the server housing one of the system’s intrusion detection 
tools has ceased operations.  In such a situation, it is 
undesirable for the threat assessment system to simply 
cease until the server is back online; rather, it should carry 
out analysis with minimal loss in accuracy despite the 
now unavailable data source. 

 Bayesian Belief Networks were selected as the 
mechanism for the threat assessment engine and 
implementing the signature/observable taxonomy.  A 
Bayesian Belief Network (BBN) is a network of nodes 
connected by directed arcs.  Each node in the network 
represents a random variable in the model, and each arc 
signifies a cause-effect relationship between the variables.  
Thus, there may be several arcs leading to or from any 
given node, but there can be no cyclic relationships.  The 
probability function associated with each node is the joint 
probability distribution of inputs to outputs.  BBN node 
values are represented as discrete variables, and so can 
accommodate both subjective and objective data.  They 



can adapt to an environment as data is processed, can 
infer unknown model elements based on known model 
elements, and perform well in the presence of uncertain or 
unavailable data [5]. 

 The design of the BBN for threat decision-level 
information fusion, shown in Figure 3 and Figure 4, 
reflects the hierarchy of the threat taxonomy. Figure 3 
depicts the design for determining the presence of each 
individual threat component.  For each threat signature, 
one or many detection methods may be available to 
perceive the observables associated with the signature.  
Each detection method performs more reliably under 
some conditions and less reliably under other conditions.  
The BBN captures this uncertainty by accounting for the 
characteristics of the environment that affect the accuracy 
of a given detection method. The detection method’s 
accuracy is modeled as an effect of the Accuracy 
Affecters in the environment, based on what is described 
in the taxonomy.  

 
Figure 3. Threat signature Bayesian network design. 

 Acquired data, in the form of raw text, images, and 
numerical measurements, are processed using state-of-the-
practice techniques to extract features and entities, and to 
make the determination of whether a threat signature was 
observed.  There is no uncertainty associated with the 
state of this node – the lower level fusion algorithms in 
feature extraction either observed a signature or not. Thus, 
the “Threat Signature Observed” node has two states 
(True, False) and is the means for incorporating the 
results of the deterministic, lower-level fusion models into 
the uncertainty model.   

 The uncertainty model for each threat signature 
accounts for what was observed, and the accuracy of the 
detection method to compute the probability that the 
threat signature actually exists. Once values for the 
“Detection Method Accuracy” and “Threat Signature 
Observed” nodes are established, the structure of the 
network allows for the propagation of belief to the 
“Threat Signature Exists” node, which is also a two-state 
node (True, False).  The output of the threat signature 
model is a level of belief, or probability, that the given 

signature actually exists based on detection result and the 
environmental factors.  This framework is applied to each 
threat signature in the taxonomy described in Section 3.2. 

 Once the presence of each threat signature is 
probabilistically determined, the second tier of the BBN 
(see Figure 4) combines each signature to determine the 
likelihood that the overall threat exists.  As with each 
threat signature, the “Threat Exists” node is a two-state 
node (True, False) that reflects whether the system 
believes the threat exists based on the fusion of all of the 
information.  In addition to a True/False value, the BBN 
provides a probability, or degree of confidence, that the 
assessment is accurate.  The probability is useful in 
conveying to an operator the level of confidence that a 
particular threat exists. 

 Prior probabilities are essential in the operation of a 
BBN.  That is, in order for the probability network to 
produce a reliable assessment, it must have historical data 
that is representative.  This system is designed to rely on 
both expert input and the shadowing of real-world 
operations to accumulate a significant historical data set. 

 
Figure 4 Threat assessment Bayesian network design. 

 The use of threat signatures in our design provides 
flexibility in combining data elements.  Consistent with 
the threat taxonomy, threat signatures are easily added to 
or removed from the BBN depending on the types of data 
sources that are available and the types of discrete tests 
performed on each extracted data item.  Similarly, 
dependencies between threat signatures with respect to 
data source accuracy are adequately captured in both the 
taxonomy and the model.  However, any temporal 
dependencies between elements are not reflected in the 
framework.  That is, this approach makes no claims to 
predict a future threat, but is focused on assessing the 
likelihood that a threat exists given the current state of all 
known data. 



4 Applications 
 This section outlines our work in applying the 
framework described in this paper to real-world 
information fusion problems.  Section 4.1 explains our 
work in the domain of threat assessment for shipped cargo 
container security.  This fusion framework is applied to 
automate the fusion of text, image, and numerical 
measurement data in order to provide reliable decision 
support in assessing whether a threat is concealed in a 
cargo container.  Section 4.2 discusses the application of 
this taxonomy and framework to the domain of cyber 
security, in order to minimize the number of intrusion 
detection false alarms associated with identified alerts and 
attacks.  We analyze the ways in which our information 
fusion approach can be applied to reliably assess the 
threat an attack or alert poses to a cyber defense. 

4.1 Shipped Container Threat Assessment 

 We applied the information fusion framework to the 
problem of threat assessment for shipped containers.  We 
have built a working prototype to demonstrate how data 
can be fused and presented to an operator in a notional 
container processing system.  The notional container 
processing system is modeled after real-world systems, 
and is comprised of multiple testing stations. Each testing 
station provides some level of data acquisition, whether it 
be an automated download of a shipping manifest, or 
equipment to produce an image of the container’s 
contents.  The prototype includes an operator interface 
that provides a view of the fused results, and a back-end 
simulation that represents the environment and systems 
used for container processing.  The software is written in 
the Java programming language and leverages the Netica 
libraries [2] for BBN implementation and the 
Visualization Toolkit (VTK) for image and volume 
visualization [3].   

 The development of the threat taxonomy was 
dependent on the data available for each shipping 
container. Table 1 describes a subset of the data used in 
this research, and the source from which the data was 
acquired.  These data are representative of the types of 
data available for shipping container information fusion, 
as specified in [8].  Table 2 contains examples of how 
these data were translated into signatures and observables.  
The prototype implements the information fusion 
framework that evaluates the threat probability, via the 
described BBN, given these signatures and observables. 

Table 1. Example shipping container data. 

Data Item Description Data Source 
Shipper Information:  
The name and address of the shipper. 

Shipping 
Manifest 

Destination Information:  
The name and address of the consignor. 

Shipping 
Manifest 

Commodity:  
A classification of the nature of the goods being 
shipped. 

Shipping 
Manifest 

Shipped Weight:  
The recorded weight of the container. 

Shipping 
Manifest 

Measured Weight:  
The weight as measured during processing. 

Scales 

Measured Radiation:  
Radiation levels detected during processing. 

Radiation Portal 

2-D Scanned Images:  
Two-dimensional images using X-ray or similar 
technology. 

Scanning 
Station 

3-D Scanned Image:  
Three-dimensional image using computed 
tomography (CT) or similar technology. 

Scanning 
Station 

 

 In the shipping container threat assessment 
application, there are three major threats being assessed: 
Explosive, Nuclear, and Radiological.  For each of these 
threats, we defined a set of signatures and observables 
that are unique to that threat.  In keeping with the 
information fusion framework taxonomy, we also 
identified detection methods and accuracy affecters for 
each of these observables.  The BBN derived from this 
taxonomy was instrumented with prior probabilities based 
on expert analysis, and was implemented with an operator 
interface that gives a user insight into the computed threat 
assessment. 

Table 2. Example signatures and observables for shipped 
container threats. 

Signature Observable 
Object Shape Shape of an object in the container is 

identified through image processing as 
consistent with the shape of a threat (e.g., 
explosive material). 

Object Density Density of an object in the container is 
identified through image processing as 
consistent with the density of a threat. 
Measured weight is consistent with recorded 
weight. 

Container Weight 

Measured weight is within the expected 
weight distribution for that commodity. 

Known Shipper Shipper is part of the Known Shipper 
program. 

Radiation Level Detected radiation counts are consistent 
with radioactive material. 

 

 Figure 5 shows the developed operator interface.  
The focus of the interface is the visualization that 
combines multiple imaging modalities in order to present 
all relevant imaging data simultaneously. Anomalies and 
threat assessments are elevated to the operator’s attention 
through graphics.   



 
Figure 5. Container threat assessment operator interface. 

 The threat score is the probability of a given threat 
being present in the container, and is communicated 
through both a meter and a colored icon located in the 
southeast area of Figure 5.  The threat score icon’s color 
maps to a 0.2 interval in the threat probability range, and 
is based on the Department of Homeland Security’s 
Color-coded Threat Level System [4].  This provides the 
operator with an immediate visual cue of the potential for 
the threat to exist.  In addition, the results of detecting 
observables associated with container signatures are 
visually presented to the operator in the form of green 
checkmark or red ‘X’ icons in the Container Details 
panel.  The icons reflect whether a signature, or collection 
of signatures was found.  We envision this framework to 
ultimately be implemented as part of a decision support 
tool for use in the freight industry. 

4.2 Cyber Security Threat Assessment 

 Enterprise cyber defense systems are typically 
overwhelmed with the volumes of data that must be 
processed and analyzed to attempt to detect unauthorized 
intrusions. Several off-the-shelf intrusion detection tools 
alert an operator to suspicious situations, but are very 
unreliable in discriminating actual attacks from suspicious 
activities [21].  Analysts are overwhelmed with the 
number of false alarms and are incapacitated to effectively 
respond to an attack. 

 The intrusion detection domain provides another 
opportunity to apply the decision-level information fusion 
framework.  Similar to container processing, it is a 
domain where data is acquired from multiple sources and 
in multiple modes, and must be merged to provide 
decision support to an operator.  The goal in this 
application is to provide a reliable assessment of the threat 
of an attack based on the current conditions. 

 The taxonomy described in Section 3.2 is easily 
applied to the intrusion detection domain.  The data 
sources are the raw data feeds being analyzed including 
network packets, operating system events, and other 
logged events in the enterprise network architecture. 

Table 3 contains a small subset of examples of individual 
intrusion detection data items and their data sources, and 
Table 4 provides examples of signatures and observables 
that may be indicators of an intrusion threat.  The 
detection methods are the niche intrusion detection tools.  
Each tool provides insight into a dimension of intrusion 
detection space, e.g., on a host, on the network.  However, 
the accuracy of these tools in identifying an actual attack 
is unreliable based on the environmental conditions (data 
rates, rule set version, etc).   

Table 3. Example intrusion detection data. 

Data Item Description Data Source 
Detected host root access:  
A user has gained root access to the system. 

Host event log 

Detected host access: 
A user has gained access to the system. 

Host event log 

Detected Malware Probe:  
An external entity is probing for planted malware. 

Intrusion 
detection log 

Detected Service Scan: 
An external entity is probing all host’s ports. 

Intrusion 
detection log 

Vulnerability Profile:  
An itemization of the services available on a host. 

IT analyst 

 

Table 4. Example signatures and observables for an 
intrusion detection threat. 

Signature Observable 
Focused Probing Event logs reveal several probing events 

focused on a single target 
Distributed Probing Event logs reveal several probing events 

sent from a single source. 
Focused Access 
Attempts 

Event logs reveal several attempts to access 
a host machine. 

Distributed Access 
Attempts 

Event logs reveal several attempts to access 
host machines from a single source. 

 

 The threats associated with intrusion detection are 
represented in terms of different attack categories.  Each 
of these categories has signatures that are indicators of 
that specific attack type.  The observables are those alerts 
that are detected through the niche intrusion detection 
tools, and reveal the presence of the signature.  When the 
information fusion framework is applied, the probability 
of each threat signature actually existing is propagated to 
determine the likelihood that the overall threat, or cyber 
attack, actually exists. 

5 Conclusion 
 This research details an approach to the fusion of 
disparate information to produce a probabilistic 
assessment of the presence of a threat.  We have proposed 
a taxonomy for organizing threats in terms of signatures 
and observables.  We have also proposed an associated 
information fusion framework that reflects the taxonomy, 
and provides a generic structure that easily accommodates 



the flexibility required in real-word applications.  The 
fusion structure also manages the uncertainty associated 
with acquired data by accounting for the environmental 
factors that affect observable detection method accuracy. 

 Information fusion was achieved by leveraging 
Bayesian Belief Networks for probabilistic threat 
assessment. The design of the Bayesian network allows 
for flexibility in terms of the taxonomy of threats.  That is, 
the approach easily accommodates multiple instances of 
threats and their signatures, and can be applied to several 
domains.  Specifically, we described the application of the 
framework to both shipping container and cyber security 
threat assessment.   

 Our future work for this research includes the 
validation of the proposed decision-level information 
fusion model and architecture for the applied domains.  In 
addition, we expect to extend the current approach to 
incorporate temporal relationships between entities and in 
the resultant BBN implementation. 
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