
A Stigmergy Approach for Open Source Software
Developer Community Simulation

Xiaohui Cui, Justin Beaver, Jim Treadwell and
Thomas Potok

Oak Ridge National Laboratory
Oak Ridge, TN 37831

Laura Pullum

Lockheed Martin Corporation
St. Paul, MN 55164-0525

Abstract—The stigmergy collaboration approach provides a
hypothesized explanation about how online groups work
together. In this research, we presented a stigmergy approach
for building an agent based open source software (OSS)
developer community collaboration simulation. We used group
of actors who collaborate on OSS projects as our frame of
reference and investigated how the choices actors make in
contribution their work on the projects determinate the global
status of the whole OSS projects. In our simulation, the forum
posts and project codes served as the digital pheromone and
the modified Pierre-Paul Grasse pheromone model is used for
computing developer agent behaviors selection probability.

Keywords-component; OSS, Pheromone, Agent, Model

I. INTRODUCTION
In most online collaborative groups, the online

environment provides a shared medium for storing
information so that it can be interpreted by other individuals
later. This stored information can be represented as
stigmergy signals, serving as long-term memory for the
group. The stigmergy collaboration approach provides a
hypothesized explanation about how these online groups
work together. The open source software (OSS) developer
community is a new kind of online software development
group where participants can read, modify, and redistribute
software source code without cost. Given the significant
amount of detailed information available on their internal
structure, OSS development communities offer a unique
opportunity to understand the large self-organized entity. In
this paper, we present a stigmergy approach [1] for
examining how the behavior of individuals affects the
emergence of an OSS project’s global status.

II. STIGMERGY COLLABORATION IN OSS COMMUNITIES
The stigmergy term was first proposed by Pierre-Paul

Grasse in the 1950s in conjunction with his research on
termites [2]. Grasse showed that a particular configuration of
a termite colony’s environment can triggered a termite to
modify its environment (drop a mud in a particular place for
building or maintaining the nest). The modification in turn
stimulates the original or other termites in colony to further
transform its environment. Grasse made a general definition
of stigmergy as: “the stimulation of the workers by the very

performances they have achieved”. The stigmergy process
has been observed in termites, ants, bees, and wasps in a
wide range of activities.

In termite colony, a highly complex termite nest is not
caused by the net building knowledge of individual termite.
It is just a collective behavior result from large numbers of
individual termites performing extraordinarily simple actions
in response to their local environment. There are no direct
communications between termite workers for coordinating
their nest building actions. The modified environment caused
by termite simple actions served as the coordinate signals.
The state of the nest structure triggers some behaviors, which
then modify the nest structure and trigger new behaviors
until the construction is over.

The concept of stigmergy provides a theory for
explaining how disparate, distributed, ad hoc contributions
from individuals could lead to the emergence of large
collaborative enterprises. While people are more intelligent
than social insects, individuals in open software development
groups use essentially the same stigmergic mechanism for
collaborating. Mockus et al. [3] point out, OSS developers
rarely if ever meet face-to-face or even via telephone.
Participants in OSS projects mainly engage in online
discussion forums or threaded email messages as a central
way to observe, participate in, and contribute to public
discussions of topics of interest to ongoing project
participants [4]. The newly developed software source codes
are uploaded to the community website for being scrutinized
by the member of the community. Any bug, error or lacking
functionality will be point out and entice community
member to take up the short come. These communication
messages functions as stigmergy signals, albeit a much more
dynamic one than the mud used by termites. The stigmergy
signal can served as a long-term memory for the group. It
can be picked up by any individual at any time.

III. RELATED WORKS
In most online hosting environments, the project related

actions are logged and the log information can later be mined
to understand the community structure and interaction
patterns. This log data provided enormous detail information
for analyzing [5, 6]. Crowston, et al. [7] proposed a model
for effective work practices in OSS development. The
model was based largely on an existing model of group

effectiveness initially proposed by Hackman [8] in 1986.
Smith, et al. [9] presented an agent-based OSS simulation
model that includes software modules complexity, the
software's fitness for purpose, the motivation of developers,
and the role of users in designing requirements. In the
researches of how the OSS developers collaborate,
researches consider the OSS movement as a self-organizing
system and a collaborative social network [10]. Social
network analysis was used for analyzing OSS community
structure. Actor relationships are represented as nodes and
links. The actor can be user or developer. Every node i
represents an actor within network; link(i,j) denotes social tie
between actors i and j. However, in OSS community, the
direct connection between actors is unusual. They exchange
the information through the forum or email-list indirectly.
Most of time, the actor even don’t know who is his message
receiver before he send out his message.

Elliott [1] argued that collaboration in small groups
(roughly 2-25) relies upon social negotiation to evolve and
guide its process and creative output. Collaboration in large
groups (roughly 25-n) is enabled by stigmergy. Heylighen
[11] proposed to distinguish the stigmergy in OSS
community as direct and indirect. In OSS development, the
unfinished jobs, served as the direct stigmergy, which
stimulate other actors to come to finish the jobs. Indirect
stigmergy can be recognized in forums where bugs or
function requests are posted. These forums are regularly
consulted by the developers, thus attracting their attention to
tasks that seem worth performing.

IV. TECHNICAL APPROACH
Our approach to reproducing the complex environment

of OSS software development community was to develop an
agent-based stigmergy collaboration model. The model will
represent how the OSS community collaboration and how
each individual developer’s chose of what software element
to develop and how many effort to contribute will impact the
status of the whole OSS project. Our hypothesis is the
collaborations of individual OSS developers and users are
stigmergy collaborations. The forum posts, email list and
unfinished source codes serve as the digital stigmergy. The
peer-to-peer communications between individual OSS
members are not occurring very often. The measures used in
this research for representing OSS project status are listed in
Table 1.

To simplifier the simulation, we assume there are only
two kinds of agents in the simulation, the developer and the
user. User agent can change to developer agent if they want
to. The agents do not interact with each other directly.
Instead, they go through the forums for information
exchange. There are two kinds of forums, the public forum
and the developer forum. The public forum can be access
and post message by any agents who are interesting in the
software project. Most of time, it served as the message
exchange board between users and developers. Users can
post questions about how to use the software, bugs they
found during the software using and functions they wish to
be included in the software. Each problem will be
represented by one forum thread. The other users and the

developers occasionally go through the forums, answer the
questions and get the first hand information about the bug
problems and the wish list functions.

TABLE I. OSS COMMUNITY STATUS MEASURES

OSS
Community
Status Metric

Font size and style

Number of
Developers

A count of the group’s core
membership

Number of
Software
Releases

A count of the number of
orchestrated actions that the group has
performed

Number of
Downloads

Measures the degree to which the
group’s actions are found to be useful
in the community

In this simulation, the developers use a modified Ant

Colony Algorithm model to choose which forum thread
problem he/she will contribute to solve. In this algorithm,
each forum thread serves as one potential digital trail to
different software development directions and the post
messages in this thread represent the digital pheromone laid
down. Every time, when user or developer posts a new
message in this forum thread, a new pheromone is deposit on
the trail. The pheromone content of a forum thread can be
updated and decayed.

Pheromone update: when a message is posted in a forum
thread, the pheromone for this thread is incremented by a
constant, γ. The nominal value of γ is one. Equation (1)
describes the pheromone update procedure when a message
is posed by actor a in a post thread d at time t.

γ+=+ t
d

t
d PP 1

 (1)

Pheromone decay: to account for pheromone decay, each
thread pheromone values are periodically multiplied by the
decay factor, ε-τ. The decay rate is τ>=0. A high decay rate
will quickly reduce the amount of remaining pheromone,
while a low pheromone decay rate will degrade the
pheromone value slowly. The nominal pheromone decay
interval is one day; we call it decay period. Equation (2)
describes pheromone decay.

τε −+ = *1 t
d

t
d PP (2)

If no message has been posted in a thread in quite some
time, the pheromone for this a thread will be decay to a near
zero value. The thread will be removed from the developer’s
potential thread select direction. According to the pheromone
theory, forum users will most likely join and post message in
the thread that has highest pheromone content.

Thread selection: Agents will randomly chose a thread
based on the amount of pheromone present on each forum

thread. The equation (3) describes the thread d ’s probability

dρ being chosen.

∑
=

+

+
= N

i

Ft
i

Ft
d

d

KP

KP

1

)(

)(
ρ

 (3)

N is the total number of forum threads. The constants F
and K are used to tune the behavior of forum users. The
value of K determines the sensitivity of the probability
calculations of small amounts of pheromone. If K is large,
then large amounts of pheromone will have to be present
before an appreciable effect will be seen in the message
posting probability. The nominal value of K is zero.
Similarly, F may be used to modulate the differences
between pheromone amounts. For example, F > 1 will
accentuate differences between links, while F < 1 will
deemphasize them. F = 1 yields a simple normalization. The
nominal value of F is two.

Another forum in the simulation is developer forum. It
serves as the internal forum and used by developers post
their ongoing works. It represents the email-list and SVN
repository in real OSS project. Each developer’s contribution
is stimulated by other developers’ ongoing works posted in
the developer forum. The probability c for developer i
continually contribute on a software element developing is
modeled as termite mud drop probability and is given by:

2)
)(

)((*
ifk

ifnc ii +
=

,

∑

∈

−=
Lj

jiif)),(1(1,0.0max()(2 α
δ

σ (4)

Here,]1,0[),(∈jiδ is the dissimilarity value between
developer i contributed post and the developer
j contributed post message in email-list and SVN

repository, in is the message length.]1,0[∈α is a data-

dependent scaling parameter, and
2σ is the total number of

post messages in developer forum in pre-defined time period
]15,1[∈L .

The equation (3) and equation (4) decide the behavior of
agents in the simulation. These individual’s behaviors can
change the OSS project status. In our simulation, one of the
measures for the status of the OSS project, the software
utility (number of downloads), is modeled by the equation
(5).

dt
dU

 represents the number of the software been
downloaded each day.

∑
=

=
N

i

ii

Z
pu

dt
dU

1

*
*θ

 (5)

d is constant. iu is the number of users who post

messages in forum thread i . ip is the number of developers
who post messages in forum thread i , and Z is the total
number of users and developers in the forum.

The membership measure (number of developers), is

modeled by the equation (6). dt
dP

 represented the increasing
rate of the number of the developers.

∑
=

=
N

i i

i

pZ
u

dt
dP

1 *
*α

 (6)

α is constant. Other parameters are same as equation (5).

V. EXPERIMENTS
We used detailed OSS community log data on

SourceForge to illustrate and validate the model’s theoretical
mechanisms. SourceForge, an online center for OSS
development communities, provides collaborative resources
for approximately 200,000 projects. This data consisted of all
the activity information of OSS software developers and
users that registered on SourceForge from 2003 to 2008. We
developed scripts that query the SourceForge Research Data
Archive hosted by the University of Notre Dame [6], for
project data that meet our criteria. We were interested in
OSS projects that reached a minimum team size of 20
developers at some point in the project lifetime in order to
insure that the social and technical factors were well
represented. In addition, we eliminated projects that did not
appear to use the SourceForge collaboration tools as a
significant means for communication and coordination. In
all, we identified 67 projects as viable for use as training data
for our OSS model. From these data, we can reconstruct how
the local behavior of setting up the project teams that created
individuals led to the emergence of the project global status
measures.

A. Determining Model’s Accuracy of Fit to Empirical
Data
We first trained the proposed agent-based model with the

data collected from the log files of OSS project web site and
then compare the closeness of the simulated results to the
empirical data. In this exercise, the model was tuned with
actual OSS project data for 9 time slices (one time slice =
one month), and then simulated for 1, 3, 6, 9, and 12
additional time slices. At each interval, an assessment of the
“Accuracy of Fit” is recorded. The Accuracy of Fit measure
is a quantitative determination of how well a model
represents the underlying data. It is a measure that indicates
the correctness of the model with respect to the data that was

used to construct the model. The Accuracy of Fit is
determined through an analysis of the Equality of Means and
the Equality of Variances between the modeled values of the
OSS project measures and the associated actual OSS project
measures values.

The Equality of Means Hypothesis Test [17] quantifies
the confidence that the mean values of two given datasets are
equivalent. The equation is shown in Figure 1. By comparing
the Equality of Means between actual open source software
community status values and the status value generated by
OSS community simulation, the ability of the OSS model to
accurately characterize the underlying data set is revealed. If
the Test Statistic for the given quality measure is less than
the critical value for that measure, then the null hypothesis
must be accepted, the means are determined to be equivalent,
and the model is said to provide an accurate fit for the
underlying data. For this study, a confidence of =0.9, or 90%
was used for all Equality of Means calculations. Thus, there
is 90% confidence that all Equality of Means determinations
are correct.

Figure 1. Hypothesis Test for Equality of Means.

The approach to calculating the Equality of Variances is
to use a textbook rule of thumb test recommended in [18],
where in comparing the modeled data to the actual data, if
the ratio of the maximum variance value to the minimum
variance value must be less than three to consider the
variances equivalent. The application of this rule of thumb is
appropriate in that it bounds the relationship of the variances.
The goal for the Equality of Variances is not to get a
quantifiable confidence on the accuracy of the modeled data
(which is already accomplished through the Equality of
Means test), but to get a discrete indication that the variance
of the modeled data is on the order of the variance of the
actual data.

Figure 2. Equality of Means Validation.

B. Results
The results of applying the Accuracy of Fit statistical

tests, Equality of Means, and Equality of Variances are
shown in Figure 2 and Figure 3. The Equality of Means
analysis, shown in Figure 2, highlights the statistical
threshold for this test as a black line. The interpretation of
this graph is that those data points below the threshold line
indicate that the simulation was able to maintain a mean
value consistent with the underlying data for those metrics.
Similarly, data points above the threshold indicate that the
simulation diverged from the distribution upon which the
simulation is based. Figure 2 shows that the mean values of
all three OSS community status measures were consistent
with their actual mean values for up to three time slices
(three months). In the case of Group Membership, the mean
value was consistent for nine simulated time slices. Thus the
model performed related well in remaining consistent with
the underlying mean values of the data for short-term
simulation, but became less consistent as the simulation
progressed.

The results of the Equality of Variances test, shown in
Figure 3, are similar to the Equality of Means in their
interpretation. Values above the threshold line indicate points
of unequal variance between actual and simulated data, and
values below the threshold indicate points of consistency
across the variances. The model did well at simulating the
variances for modeled values consistent with the underlying
OSS data.

Figure 3. Equality of Variances Validation.

VI. CONCLUSION
We used group of agents who collaborate on projects

through forums as our frame of reference and investigated
how the choices agents make in contribution their work on
the projects determinate the global status of the whole OSS
projects. Our hypothesis is that the collaborations of
individual OSS developers and users are stigmergy
collaborations. We proposed a stigmergy collaboration OSS
model to produce a simulation that accurately represents the
collaboration in an OSS community. We compared the
simulated output to empirically observed behaviors in
different OSS project forums. The simulation is able to
partially reproduce the forum evolution trend in many OSS
projects. The closeness of the simulated results to the
empirical data indicates that our model may reflect the
processes that occur in OSS evolution. Our next step will be
extending the research model to other self organized
communities. Our hypothesis is if two systems obey the
same mathematical laws, we can perform experiments on
one system and infer how another system might behave
under similar conditions.

ACKNOWLEDGMENT
Prepared by Oak Ridge National Laboratory, P.O. Box

2008, Oak Ridge, Tennessee 37831-6285, managed by UT-
Battelle, LLC, for the U.S. Department of Energy under
contract DE-AC05-00OR22725; and prepared by Lockheed
Martin Company. The views and conclusions contained in
this document are those of the authors and should not be
interpreted as representing the official policies, either
expressed or implied, of the Oak Ridge National Laboratory,
Lockheed Martin Company, the Department of Energy or the
U.S. government.

REFERENCES
[1] Elliott, M., Stigmergic Collaboration: The Evolution of Group Work.

M/C Journal, 2006. 9(2).

[2] Dorigo, M., E. Bonabeau, and G. Theraulaz, Ant algorithms and
stigmergy. Future Generation Computer Systems, 2000. 16(8): p.
851-871.

[3] Audris Mockus, R.T.F., James D. Herbsleb, Two case studies of open
source software development: Apache and Mozilla. ACM Trans.
Softw. Eng. Methodol., 2002. 11(3): p. 37.

[4] Yutaka Yamauchi, M.Y., Takeshi Shinohara, Toru Ishida,
Collaboration with Lean Media: how open-source software succeeds.
CSCW, 2000: p. 9.

[5] Xu, J., Y. Gao, and G. Madey. A Docking Experiment: Swarm and
Repast for Social Network Modeling. in Seventh Annual Swarm
Researchers Meeting (Swarm2003). 2003. Notre Dame, IN.

[6] Christley, S. and G. Madey, Collection of Activity Data for
SourceForge Projects. 2005, Dept. of Computer Science and
Engineering, University of Notre Dame: Notre Dame, IN.

[7] K. Crowston, H.A., J. Howison, and C. Masango, Towards a Portfolio
of FLOSS Project Success Measures, in The 4th Workshop on Open
Source Software Engineering, International Conference on Software
Engineering (ICSE) 2004.

[8] Hackman, J.R., The design of work teams. The Handbook of
Organizational Behavior, ed. J.W. Lorsch. 1986, Englewood Cliffs,
NJ: Prentice-Hall.

[9] Neil Smith, A.C., Juan Fernández-Ramil, sers and Developers: An
Agent-Based Simulation of Open Source Software Evolution, in
SPW/ProSim 2006. 2006.

[10] Jin Xu, Y.G., Scott Christley, Gregory R. Madey, A Topological
Analysis of the Open Souce Software Development Community in
HICSS 2005. 2005.

[11] 11. heyligen, F., ed. Why is Open Access Development so
Successful? Open Source Jahrbuch, ed. M.B.R.A.G. B. Lutterbeck.
2007, Lehmanns Media.

[12] Dorigo, M., Ant colony optimization and swarm intelligence 4th
International Workshop, ANTS 2004, Brussels, Belgium, September
5-8, 2004 : proceedings. Lecture notes in computer science. 2004,
Berlin: Springer.

[13] Bankes, S., Exploratory Modeling for Policy Analysis. Operations
Research, 1993. 41(3): p. 435-449.

[14] Sargent, R.G. Verification and Validation of Simulation Models. in
Proc. 2003 of Winter Simulation Conference. 2003. New Orleans,
Louisiana.

[15] Macal, C.M. and M.J. North, Validation of an Agent-Based Model of
Deregulated Electric Power Markets, in North American Association
for Computational and Social Organization (NAACSOS) Conference.
2005: Notre Dame, Indiana.

[16] Axtell, R., et al., Aligning simulation models: a case study and
results. Computational and Mathematical Organization Theory, 1995.
1(2): p. 18.

[17] Sincich, W.M.a.T., Statistics for Engineers and the Sciences. 1995,
Upper Saddle Ridge, NJ: Prentice-Hall.

[18] Voss, A.M.D.a.D.T., Design and Analysis of Experiments. 1999,
New York, NY: Springer-Verlag New York, Inc.

