
Pushing Sensor Network Computation to the Edge
Evens Jean & Robert T. Collins
Computer Science & Engineering
The Pennsylvania State University

University Park, PA 16802

Ali R. Hurson & Sahra Sedigh
Department of Computer Science
Missouri University of Science &

Technology
Rolla, MO 65409

Yu Jiao
Computational Sciences & Engineering

Division
Oak Ridge National Laboratory

Oak Ridge, TN 37831

Abstract---Sensor Networks consist of multiple devices equipped
with some sensing apparatus. The devices in the network may be
homogeneous or heterogeneous, yet they will coordinate in order
to accomplish a pre-defined task. With the rising interest in the
use of Sensor Networks in various applications, the sensor nodes
need to subsist in a dynamic environment and react in a timely
fashion to environmental stimuli. Unfortunately, the current
paradigm in Sensor Network relies on static tasking of the nodes
to support a common task; which ultimately leads to deployment
of various networks to cover a common area so long as the tasks
and owners of these networks differ. Straying away from this
paradigm, our work introduces a framework to enable nodes to
support dynamic tasking in a dynamic environment by pushing
computation to the edge through FPGA-based reconfigurable
nodes with increased processing power. Furthermore, we contend
that the sensing apparatus available on the nodes limits the range
of applications that such nodes will support. As such,
reconfigurability of the nodes can yield the most efficient and
responsive hardware implementation of algorithms to support
common tasks of applications. The benefits of our approach are
highlighted through the introduction of a target-tracking node
that is reconfigurable and provides increased response time to
stimuli.

I. INTRODUCTION
The use of sensing nodes to form a network that reacts to

environmental stimuli is generally referred to as Sensor
Network. With the increase of possible applications of Sensor
Network came an increase in constraints within which the
system needs to operate. The ability to track a target as it
makes its way across a covered sensing area is one of the many
attractive applications of the field. Tracking suspected terrorists
in an airport using sensing nodes can be quite effective as
humans cannot be expected to keep watch of all ongoing
activities in various frames of video [7, 8]. Relaying of the
sensed data from the nodes need to occur within severe time
constraints or risk defeating the purpose of the tracking
application.

Apart from the restrictions imposed on the network by the
increase of possible applications, there is also the issue of static
tasking in a dynamic environment. Various networks may
monitor a covered area in the event that they were not pre-
programmed for the same task and by the same owners. This is
an undesirable effect especially in urban settings where the
proliferation of nodes can be cumbersome. Generally, for every
new application, a new set of nodes need to be deployed in the
area of interest, even when existing networks in the area may
possess the capability to accomplish the new task. We contend
that dynamic tasking of the nodes is the approach of choice to

address the issue as the nodes subsist in a dynamic
environment.

Our work intends to address the issue of dynamic tasking to
prevent node proliferation by pushing Sensor Network
computation to the edge. The work also addresses the issue of
improving the processing speed of sensed data, in order to
satisfy timing constraints of applications. The background and
related works are thus discussed in section 2, while Section 3
presents our approach. Implementation of a node based on the
proposed approach is discussed in Section 4 and experimental
results are presented in Section 5. Section 6 concludes this
article highlighting our contribution and future works.

II. BACKGROUND & RELATED WORKS
In order to address the issue of static tasking in a dynamic

environment, nodes have been viewed as “active sensors” [4]
rendered reconfigurable through the use of virtual machines,
script interpreters, and mobile agents [4, 5]. In general, this
approach does not attempt to improve processing power of
nodes, nor take advantage of the limited applications a node
can support based on its sensing abilities.

Proposals to deal with tracking in sensor network have
generally focused on minimizing energy consumption and not
on accuracy and response time to stimuli [8]. In addition, those
proposals generally do not make any notion as to what types of
sensing devices are available on the sensor nodes nor do they
provide actual implementation of the proposed systems.
VigilNet [6] was introduced to track fast moving target, such as
a vehicle, within specified timing constraints. Video Sensor
Network (VSN) was used in [9], and relies on real-time
processing of the data through in-network processing to reduce
communication volume and latency [7]. Our approach in
achieving improved response time differs from such proposals,
which have adopted a software perspective to solving the
problem. The work herein laid out achieves its goal through
provision of low-level hardware support for applications that
can be expected to subsist on a particular node based on the
node’s sensing abilities. Our proposal can thus be adapted to
various application scenarios.

III. FPGA-BASED SENSOR NETWORK
With the possibly diverse set of sensing apparatus of the

various nodes, the network can support a vast array of
applications especially since the computational restrictions
traditionally imposed on sensor nodes can be alleviated.
Bringing computation to the edge, will allow the network to
support application with severe real-time processing

The National Science Foundation under the contract IIS-
0324835 in part has supported this work. We gratefully
acknowledge the tools and hardware provided by Xilinx.

constraints, such may be the case in video-based target tracking
applications. To address the limitations of the systems herein
discussed, we introduce a new framework based on the use of
Field Programmable Gate Arrays (FPGA) to achieve a time-
shared Sensor Network environment that strays away from the
“dumb” node philosophy common to Sensor Network
proposals. FPGA allows for a hardware chip to be
reprogrammed. The advantages of using FPGAs within Sensor
Network have been discussed in [5]. As the nodes are
reconfigurable at the hardware layer, their reconfiguration can
take advantage of possibly novel energy-efficient hardware
implementations of algorithms. In addition, provision of
hardware support for low-level tasks can significantly reduce
the amount of information that needs to be relayed to base
stations by applications.

This article is not intended to enumerate an application set
for every sensing device. Instead, we contend that there is a
limited set of tasks, herein denoted as Low-Level Tasks (LLT),
to be performed on data collected by sensors. As an example,
tracking would represent an LLT for the camera(s) on a node.
Providing hardware support for such tasks on the FPGA nodes
can allow various applications to take advantage of the
common tasks implemented in a manner that improves
response time. As per our proposal, we perceive the need to
support not solely low-level tasks, but also a generic set of
instructions thereby providing reconfigurability at both the
hardware and software level. The architecture of the system
consists of a general-purpose processor (GPP) interacting with
low-level tasks implemented as hardware peripherals. The
presence of the general-purpose processor supports the specific
needs of applications; while the LLTs allow applications to
take advantage of generic tasks associated with the sensing
devices on the node.

While our model is quite simple, it represents a paradigm
shift from traditional Sensor Network where severe constraints,
ranging from price to computational power, are placed on the
nodes. Being FPGA-based, we expect our nodes to be pricier
than traditional sensor nodes. However, our model will be of
great importance to any Sensor Network applications that
would benefit from the re-programmability of nodes that can
swiftly react to environmental stimuli while supporting a
diverse set of applications with some commonalities in a
dynamic environment. In order to highlight the importance of
our proposal, we implemented the framework and used the
Mean-Shift algorithm as a tracking LLT (section 4). The
implemented node serves as the platform used to evaluate the
accuracy and response time of the system.

IV. IMPLEMENTATION OF TRACKER NODE
As per the requirements of the framework, the tracker node

is implemented with a general-purpose processor to which an
LLT tracker is attached. In so doing, we used the development
FPGA board ML405 [3] available from Xilinx. The FPGA on
the board contains a hard-core version of the IBM
PowerPC405 processor, which is used as our GPP. The
PPC405 core is connected to the LLT through the Processor
Local Bus. The LLT track objects through an implementation
of the Mean-Shift tracking algorithm [1].

The mean-shift algorithm is a nonparametric mode-seeking
algorithm that performs hill-climbing to locate the nearest local
mode of a kernel density estimate computed from some
sampled function. When used for tracking, the function to be
maximized is the similarity of color distribution between a
target model and an image window centered at a candidate
target location. At each image frame, the algorithm iteratively
shifts its current estimate of the target window location until
this color similarity can no longer be improved. The hardware
implementation of the algorithm consists of two major
components, notably a Mean-Shift Controller and a Memory
Controller. The Mean-Shift Controller implements the Mean-
Shift algorithm using the Normal Kernel for accuracy [1], and
computes the memory addresses to be accessed. It comprises a
floating-point ALU upon which the implementation of the
Normal Kernel relies. Upon initiation of the system, the Mean-
Shift controller performs the mathematical computations
specified by the Mean-Shift algorithm [1] to determine the new
location of the target. In so doing, the Mean-Shift controller
interacts with the Memory Controller, which provides read and
write functionalities to the system’s memory, thereby allowing
access to data collected by the sensors.

In implementing the tracking algorithm, we had to balance
speed, precision as well as the physical area that will be
required by the LLT. The use of the Normal Kernel, which
relies on the exponential function, further complicated our task
of achieving a balanced implementation of the tracking
algorithm. However, through the use of an Arithmetic Logic
Unit (ALU), (section IV-A) and an approximation of the
Normal Kernel (section IV-B), we were able to achieve our
goal.

A. System ALU
The Mean-Shift Controller, or General System Controller

(GSC) represents the core of the hardware implementation.
GSC performs the various functions of Mean-Shift by relying
on an ALU in order to maintain a high-precision in the
calculations, especially the ones involving the application of
the kernel. As the tracking LLT needs to frequently perform
floating-point operations, we thus implemented the ALU with
the ability to handle such operations. In the interest of
improving the system’s speed and keeping the size of the ALU
to a minimum, a wrapper was used on numerous units of the
ALU to give the illusion of the availability of more than one
processing unit, and allow pipelining of pixel processing. The
ALU supports multiplication, comparison, division, square
root, addition and subtraction in IEEE-754 single precision
format; conversion to and from single precision is also
supported. Furthermore, the generation of the histogram
address of a pixel is an integral component of the ALU.

In general, computing the histogram address of a pixel is
highly dependent upon the number of bins the histograms in
the system are allowed to have. Our implementation supports
2, 4, 8, 16, 32, 64, 128 and 256 bins with the assumption that
we are operating in the RGB-24 color space. Note that, for one
component of unsigned 8-bit value, if the histogram is made of
256 bins, the binary representation can be used as the index
into the histogram bins. Similarly for 128 bins, the leftmost 7
bits represent the address of the component into the histogram

and so on for any number of bins that is a power of 2. The
histogram address (A) of a pixel is thus obtained using
Equation 1 with “>> n” representing the right-shifting
operation of the 8-bit value of the component. Let p be the
number of bits required to represent the number of bins (K) in a
component; n = 8 – p + 1. Thusly, for 256 bins, n = 8 – 9 + 1 =
0; hence no shifting is required; whereas for 2 bins, n = 8 – 2 +
1 = 7. By using this scheme, the process of computing the
histogram bin to which a pixel belongs is extremely simplified.
Since K is a power of 2 and is known in advance, we can take
advantage of the properties of binary multiplication and
addition. Thusly, computing A comes essentially free of charge
in hardware, a considerable achievement in helping keep the
size of the ALU to a minimum.

B. Normal Kernel Implementation
While implementation of the Mean-Shift algorithm using

the Normal profile generally leads to higher accuracy [1], it is
however dependent upon the exponential function; which
makes it very undesirable in terms of computational time. Our
implementation relies on the work of Schraudolph [2], which
approximates the exponential function ey for y being an IEEE-
754 double precision floating-point number. As 8 bytes are
used to store a number in double precision; computing ey is
achieved by setting the leftmost 4 bytes to i = ay + (b-c) where
a = 220 / ln(2), and b = 1023*220 and c = 60801 is an
adjustable parameter affecting the accuracy [2]. The value of c
stated here has been shown to minimize the root-mean-square
relative error [2]. Furthermore, the algorithm is only applicable
if the value of y is roughly between -700 and 700.

As our ALU supports the single precision format,
Schraudolph’s work is not directly applicable to our scenario.
However, the value b-c can be pre-calculated, thus only two
operations are required (one addition and one multiplication).
Furthermore, we conducted the addition and multiplication in
single precision. 896 is added to the exponent portion of the
adder’s result (bits 30 to 23) yielding the 11-bit exponent in
IEEE-754 double precision. The sign of the result is maintained
along with bits 22 down to 6. This scheme allows us to take
advantage of Schraudolph’s work in approximating the
exponential function in hardware. Equation 2 derives the
application of Schraudolph’s work to the Normal Kernel. As
shown, the implementation of the Normal Kernel to any value
x in hardware is thus reduced to one multiplication, on addition
and one division. This is feasible since the coefficient of x and
the second addend can be pre-computed for different
dimensional spaces d and stored in registers. Applying KN(x)

essentially comes free of charge as the ALU already
encompasses an adder, a multiplier and a divider in IEEE-754
format. We noted earlier that the approximation is only valid
for numbers in the range from -700 to 700. This limitation is
suitable for our purpose in computing the color probabilities,
since the value (y-xi) in the Mean-Shift algorithm is less than
the kernel bandwidth h [1]. Thus, application of the kernel only
operates on values within the specified range.

V. SYSTEM EVALUATION
The proposed system was synthesized, implemented and

downloaded onto the Xilinx ML405 board with 128MB of
memory, serial interfacing for connectivity and a Compact
Flash card of 512MB for data storage. Furthermore, the LLT is
running on a 50Mhz clock, while the GPP runs at 100Mhz. The
experiments used images loaded on the Compact Flash card
where they can be accessed by the system. Note that the system
could have just as easily communicated, through a memory
buffer, with a camera attached to the board. However, we opted
for the current implementation in our setup for flexibility, and
control. In evaluating the proposed system, our aim is to
showcase the system’s accuracy, as well as its response time to
stimuli.

A. System Accuracy
The implemented LLT being a tracker, we studied the

accuracy of the tracker by looking at the trajectory of an object
over successive image frames. In order to do so, we wrote a
small program to interact with the driver of the LLT providing
it with the memory buffer containing the raw RGB bytes that
the hardware expects along with the memory locations of the
histograms on which the system operates. The initial location
of the objects to be tracked has been pre-determined and passed
on to the hardware. Upon locating the new location of the
target, the information is used to initialize the hardware for
processing of the next frame. A total of 50 frames were
processed, due to storage restrictions, over the course of this
experiment. The determined location of the object of interest is
returned by the hardware as a tuple (x, y) representing the
center of the object. The tuple is collected and used offline to
visualize the system’s accuracy. Figure 1, depicts the accuracy
of the LLT tracker implementation by presenting the system’s
result over the processed frames. The figure showcases the
location of the target as determined by the hardware in frames
7, and, 41 (from left to right). As presently implemented, the
LLT does not deal directly with occlusions nor change in size
of the object being tracked. The latter however could be
handled if the software adjusts the bandwidth of the LLT as the
size of the object changes.

Figure 1. LLT Tracker Results

!

KN (x) = (2")#d/2exp(
#1

2
x)

KN (x) =
1

(2")d
.

1

exp(
1

2
x)

KN (x) =
1

(2")d
.

1

(a)exp(
1

2
)(x) + exp(

1

2
)(b # c)

KN (x) =
1

((2")d)(a)exp(
1

2
)

$

% &
'

()
x + (2")d exp(

1

2
)

$

% &
'

()
(b # c)

(Eq. 2)

)()()(2
nBKnGKnRA >>+>>+>>= (Eq. 1)

B. Response Time to Stimuli
In studying the response time of the system, we intend to

account for the execution time and the communication time
involved. As thus, for experimental purposes, we considered
the ideal case of one node with direct serial connection of 9600
baud rate to a base station. The base station comprises a Xeon
2.2 Ghz with 1.0 GB of memory; while the sensor node is the
GPP discussed earlier, capable of being configured as both a
traditional or smart sensor node. The purpose of the experiment
is to measure the reaction time of the system to an observation,
in our case, the displacement of an object beyond a specified
threshold as the object is tracked. The chosen scenario is
intended to mirror possible application of a smart node to
monitor an object of value, such as a Fabergé egg, which is not
expected to move drastically from its initial location.

Under the traditional sensor node configuration, the base
station repeatedly queries the node for the current picture frame
and computes the location of the target in order to determine
motion threshold violations. The base station uses the Mean-
Shift tracker implementation from Bilkent University [9].
Using the smart node configuration, the base station needs only
relay the initial location of the target along with the other
parameters necessary to initialize the LLT and determine
threshold violation. The smart node is responsible for
determining motion violation and contacting the base station to
relay that fact. We set the alarm threshold to be twice that of
the bandwidth. Note that the threshold depends on pixel
locations as opposed to calibrated location of the object for
simplicity. The communication time, tracking time and total
execution time of both configurations were measured and
displayed in figure 2.

An analysis of the figure reveals that the traditional
configuration computes the new location of the target in a
fraction of the time taken by the smart node tracker which takes
an average of 5.9 seconds per frame, which includes
communication time to notify the base station. On the other
hand, the smart node spends a fraction of the time
communicating with the base station; thus, the total execution
time of the smart node is significantly lower than that of the
traditional sensor node setup. This is due mainly to the fact that
the traditional node setup has to transfer over 640*480*3 bytes
over the serial connection at a rate of 9600 bits per second.

Due to the Bilkent tracker’s performance on the base
station, we studied the effect of having a smart node executing
the tracker on its GPP to determine whether a software-based
“smart” sensor might be the best solution in terms of reaction

time to stimuli. Figure 2 shows that the Bilkent tracker
processed frames within 27.2633 seconds on the GPP. The
LLT tracker, on the hand accomplished the same feat in 0.8791
seconds, on average, thereby providing a sizeable improvement
in response time to any application that should rely on the LLT.
The considerable difference in execution time between the
trackers is not surprising as the LLT is hardware-based, which
explains our motivation in providing such tasks as optimized
hardware modules based on the sensing devices available on a
node in order improve response time to stimuli, as opposed to
simply proposing the use of more powerful nodes.

VI. CONCLUSION
Our work has focused on bringing sensor network

computation to the edge. We have been guided by the need to
provide a system capable of subsisting in a dynamic
environment while reducing the response time to stimuli of
nodes in the network. We have proposed the use of
reconfigurable hardware dotted with Low Level Tasks, in
hardware, that are common to the set of applications that can
be expected to run on a node based on the node’s sensing
devices. We have implemented one such LLT as a tracker
based on the Mean-Shift algorithm and have shown the LLT to
be accurate and very responsive. The improved response time
of the system can be crucial to time sensitive operations. We
have thus far focused on the node level in addressing the need
to have a responsive and dynamic system. Our future work,
will attempt to address the issue by looking at the network as a
whole, with multiple nodes present. We hope to use the
dynamic nature of the herein proposed nodes and their
increased computational power to provide interoperability
within sensor network. The current LLT tracker does not
handle occlusion, which can occur somewhat frequently in a
dynamic environment. As such, dealing with the issue, would
be of great value to the proposed work.

VII. REFERENCES
[1] D. Comaniciu, V. Ramesh, P. Meer: “Real-Time Tracking of Non-Rigid

Objects using Mean Shift” In IEEE CVPR'00, Vol. 2, 142-149, 2000
[2] N. N. Schraudolph, "A fast, compact approximation of the exponential

function", Technical Report IDSIA-07-98, Istituto Dalle Molle di Studi
sull'Intelligenza Artificiale, Lugano, Switzerland, 1998.

[3] Xilinx documentation for ML405 board
http://www.xilinx.com/support/documentation/boards_and_kits/ug210.p
df retrieved July 25, 2008

[4] Boulis A., Han C., Srivastava M. B. “Design and Implementation of a
Framework for Efficient and Programmable Sensor Networks” In
MobiSys’03, pages 187-200, 2003. ACM Press.

[5] E. Jean, Y. Jiao, A. R. Hurson, V. Kumar. “Pushing Sensor Network
Computation to the Edge while Enabling Inter-Network Operability and
Securing Agents” In IRA-DSN Symposium November 2007.

[6] T. He, P. A. Vicaire, et al. “Achieving Real-Time Target Tracking Using
Wireless Sensor Networks” In ACM Transactions on Embedded
Computing System (TECS), 2007.

[7] Y. Gu, Y. Tian, E. Ekici. “Real-Time multimedia processing in video
sensor networks” Image Commun. 22, 3 (Mar. 2007), 237-251.

[8] J. A. Stankovic, T. Abdelzaher, C. Lu, L. Sha, J. Hou. “Real-Time
Communication and Coordination in Embedded Sensor Networks” In
Proceedings of the IEEE 2003 Pp. 1002-1022

[9] http://www.cs.bilkent.edu.tr/~ismaila/MUSCLE/MSTracker.htm
retrieved January12th, 2009.

127

825

134

827
5.9123

0.0873

0.8975

27.2633

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Comm. Time Execution

Time on BS

Tracking Time

on BS

Tracking Time

on GPP

Smart Vs Traditional Node

Traditional Node

SmartNode
Figure 2. Experimental Results

