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Abstract---Sensor Networks consist of multiple devices equipped 
with some sensing apparatus. The devices in the network may be 
homogeneous or heterogeneous, yet they will coordinate in order 
to accomplish a pre-defined task. With the rising interest in the 
use of Sensor Networks in various applications, the sensor nodes 
need to subsist in a dynamic environment and react in a timely 
fashion to environmental stimuli. Unfortunately, the current 
paradigm in Sensor Network relies on static tasking of the nodes 
to support a common task; which ultimately leads to deployment 
of various networks to cover a common area so long as the tasks 
and owners of these networks differ. Straying away from this 
paradigm, our work introduces a framework to enable nodes to 
support dynamic tasking in a dynamic environment by pushing 
computation to the edge through FPGA-based reconfigurable 
nodes with increased processing power. Furthermore, we contend 
that the sensing apparatus available on the nodes limits the range 
of applications that such nodes will support. As such, 
reconfigurability of the nodes can yield the most efficient and 
responsive hardware implementation of algorithms to support 
common tasks of applications. The benefits of our approach are 
highlighted through the introduction of a target-tracking node 
that is reconfigurable and provides increased response time to 
stimuli. 

I. INTRODUCTION 
The use of sensing nodes to form a network that reacts to 

environmental stimuli is generally referred to as Sensor 
Network. With the increase of possible applications of Sensor 
Network came an increase in constraints within which the 
system needs to operate. The ability to track a target as it 
makes its way across a covered sensing area is one of the many 
attractive applications of the field. Tracking suspected terrorists 
in an airport using sensing nodes can be quite effective as 
humans cannot be expected to keep watch of all ongoing 
activities in various frames of video [7, 8]. Relaying of the 
sensed data from the nodes need to occur within severe time 
constraints or risk defeating the purpose of the tracking 
application. 

Apart from the restrictions imposed on the network by the 
increase of possible applications, there is also the issue of static 
tasking in a dynamic environment. Various networks may 
monitor a covered area in the event that they were not pre-
programmed for the same task and by the same owners. This is 
an undesirable effect especially in urban settings where the 
proliferation of nodes can be cumbersome. Generally, for every 
new application, a new set of nodes need to be deployed in the 
area of interest, even when existing networks in the area may 
possess the capability to accomplish the new task. We contend 
that dynamic tasking of the nodes is the approach of choice to 

address the issue as the nodes subsist in a dynamic 
environment. 

Our work intends to address the issue of dynamic tasking to 
prevent node proliferation by pushing Sensor Network 
computation to the edge. The work also addresses the issue of 
improving the processing speed of sensed data, in order to 
satisfy timing constraints of applications. The background and 
related works are thus discussed in section 2, while Section 3 
presents our approach. Implementation of a node based on the 
proposed approach is discussed in Section 4 and experimental 
results are presented in Section 5. Section 6 concludes this 
article highlighting our contribution and future works. 

II. BACKGROUND & RELATED WORKS 
In order to address the issue of static tasking in a dynamic 

environment, nodes have been viewed as “active sensors” [4] 
rendered reconfigurable through the use of virtual machines, 
script interpreters, and mobile agents [4, 5]. In general, this 
approach does not attempt to improve processing power of 
nodes, nor take advantage of the limited applications a node 
can support based on its sensing abilities. 

Proposals to deal with tracking in sensor network have 
generally focused on minimizing energy consumption and not 
on accuracy and response time to stimuli [8]. In addition, those 
proposals generally do not make any notion as to what types of 
sensing devices are available on the sensor nodes nor do they 
provide actual implementation of the proposed systems. 
VigilNet [6] was introduced to track fast moving target, such as 
a vehicle, within specified timing constraints. Video Sensor 
Network (VSN) was used in [9], and relies on real-time 
processing of the data through in-network processing to reduce 
communication volume and latency [7]. Our approach in 
achieving improved response time differs from such proposals, 
which have adopted a software perspective to solving the 
problem. The work herein laid out achieves its goal through 
provision of low-level hardware support for applications that 
can be expected to subsist on a particular node based on the 
node’s sensing abilities. Our proposal can thus be adapted to 
various application scenarios. 

III. FPGA-BASED SENSOR NETWORK 
With the possibly diverse set of sensing apparatus of the 

various nodes, the network can support a vast array of 
applications especially since the computational restrictions 
traditionally imposed on sensor nodes can be alleviated. 
Bringing computation to the edge, will allow the network to 
support application with severe real-time processing 
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constraints, such may be the case in video-based target tracking 
applications. To address the limitations of the systems herein 
discussed, we introduce a new framework based on the use of 
Field Programmable Gate Arrays (FPGA) to achieve a time-
shared Sensor Network environment that strays away from the 
“dumb” node philosophy common to Sensor Network 
proposals. FPGA allows for a hardware chip to be 
reprogrammed. The advantages of using FPGAs within Sensor 
Network have been discussed in [5]. As the nodes are 
reconfigurable at the hardware layer, their reconfiguration can 
take advantage of possibly novel energy-efficient hardware 
implementations of algorithms. In addition, provision of 
hardware support for low-level tasks can significantly reduce 
the amount of information that needs to be relayed to base 
stations by applications. 

This article is not intended to enumerate an application set 
for every sensing device. Instead, we contend that there is a 
limited set of tasks, herein denoted as Low-Level Tasks (LLT), 
to be performed on data collected by sensors. As an example, 
tracking would represent an LLT for the camera(s) on a node. 
Providing hardware support for such tasks on the FPGA nodes 
can allow various applications to take advantage of the 
common tasks implemented in a manner that improves 
response time. As per our proposal, we perceive the need to 
support not solely low-level tasks, but also a generic set of 
instructions thereby providing reconfigurability at both the 
hardware and software level. The architecture of the system 
consists of a general-purpose processor (GPP) interacting with 
low-level tasks implemented as hardware peripherals. The 
presence of the general-purpose processor supports the specific 
needs of applications; while the LLTs allow applications to 
take advantage of generic tasks associated with the sensing 
devices on the node. 

While our model is quite simple, it represents a paradigm 
shift from traditional Sensor Network where severe constraints, 
ranging from price to computational power, are placed on the 
nodes. Being FPGA-based, we expect our nodes to be pricier 
than traditional sensor nodes. However, our model will be of 
great importance to any Sensor Network applications that 
would benefit from the re-programmability of nodes that can 
swiftly react to environmental stimuli while supporting a 
diverse set of applications with some commonalities in a 
dynamic environment. In order to highlight the importance of 
our proposal, we implemented the framework and used the 
Mean-Shift algorithm as a tracking LLT (section 4). The 
implemented node serves as the platform used to evaluate the 
accuracy and response time of the system. 

IV. IMPLEMENTATION OF TRACKER NODE 
As per the requirements of the framework, the tracker node 

is implemented with a general-purpose processor to which an 
LLT tracker is attached. In so doing, we used the development 
FPGA board ML405 [3] available from Xilinx. The FPGA on 
the board contains a hard-core version of the IBM 
PowerPC405 processor, which is used as our GPP. The 
PPC405 core is connected to the LLT through the Processor 
Local Bus. The LLT track objects through an implementation 
of the Mean-Shift tracking algorithm [1]. 

The mean-shift algorithm is a nonparametric mode-seeking 
algorithm that performs hill-climbing to locate the nearest local 
mode of a kernel density estimate computed from some 
sampled function.  When used for tracking, the function to be 
maximized is the similarity of color distribution between a 
target model and an image window centered at a candidate 
target location.  At each image frame, the algorithm iteratively 
shifts its current estimate of the target window location until 
this color similarity can no longer be improved. The hardware 
implementation of the algorithm consists of two major 
components, notably a Mean-Shift Controller and a Memory 
Controller. The Mean-Shift Controller implements the Mean-
Shift algorithm using the Normal Kernel for accuracy [1], and 
computes the memory addresses to be accessed. It comprises a 
floating-point ALU upon which the implementation of the 
Normal Kernel relies. Upon initiation of the system, the Mean-
Shift controller performs the mathematical computations 
specified by the Mean-Shift algorithm [1] to determine the new 
location of the target. In so doing, the Mean-Shift controller 
interacts with the Memory Controller, which provides read and 
write functionalities to the system’s memory, thereby allowing 
access to data collected by the sensors.  

In implementing the tracking algorithm, we had to balance 
speed, precision as well as the physical area that will be 
required by the LLT. The use of the Normal Kernel, which 
relies on the exponential function, further complicated our task 
of achieving a balanced implementation of the tracking 
algorithm. However, through the use of an Arithmetic Logic 
Unit (ALU), (section IV-A) and an approximation of the 
Normal Kernel (section IV-B), we were able to achieve our 
goal. 

A. System ALU 
The Mean-Shift Controller, or General System Controller 

(GSC) represents the core of the hardware implementation. 
GSC performs the various functions of Mean-Shift by relying 
on an ALU in order to maintain a high-precision in the 
calculations, especially the ones involving the application of 
the kernel. As the tracking LLT needs to frequently perform 
floating-point operations, we thus implemented the ALU with 
the ability to handle such operations. In the interest of 
improving the system’s speed and keeping the size of the ALU 
to a minimum, a wrapper was used on numerous units of the 
ALU to give the illusion of the availability of more than one 
processing unit, and allow pipelining of pixel processing. The 
ALU supports multiplication, comparison, division, square 
root, addition and subtraction in IEEE-754 single precision 
format; conversion to and from single precision is also 
supported. Furthermore, the generation of the histogram 
address of a pixel is an integral component of the ALU.  

In general, computing the histogram address of a pixel is 
highly dependent upon the number of bins the histograms in 
the system are allowed to have. Our implementation supports 
2, 4, 8, 16, 32, 64, 128 and 256 bins with the assumption that 
we are operating in the RGB-24 color space. Note that, for one 
component of unsigned 8-bit value, if the histogram is made of 
256 bins, the binary representation can be used as the index 
into the histogram bins. Similarly for 128 bins, the leftmost 7 
bits represent the address of the component into the histogram 



and so on for any number of bins that is a power of 2. The 
histogram address (A) of a pixel is thus obtained using 
Equation 1 with “>> n” representing the right-shifting 
operation of the 8-bit value of the component. Let p be the 
number of bits required to represent the number of bins (K) in a 
component; n = 8 – p + 1. Thusly, for 256 bins, n = 8 – 9 + 1 = 
0; hence no shifting is required; whereas for 2 bins, n = 8 – 2 + 
1 = 7. By using this scheme, the process of computing the 
histogram bin to which a pixel belongs is extremely simplified. 
Since K is a power of 2 and is known in advance, we can take 
advantage of the properties of binary multiplication and 
addition. Thusly, computing A comes essentially free of charge 
in hardware, a considerable achievement in helping keep the 
size of the ALU to a minimum.  

B. Normal Kernel Implementation 
While implementation of the Mean-Shift algorithm using 

the Normal profile generally leads to higher accuracy [1], it is 
however dependent upon the exponential function; which 
makes it very undesirable in terms of computational time. Our 
implementation relies on the work of Schraudolph [2], which 
approximates the exponential function ey for y being an IEEE-
754 double precision floating-point number. As 8 bytes are 
used to store a number in double precision; computing ey is 
achieved by setting the leftmost 4 bytes to i = ay + (b-c) where 
a = 220 / ln(2), and b = 1023*220 and c = 60801 is an 
adjustable parameter affecting the accuracy [2]. The value of c 
stated here has been shown to minimize the root-mean-square 
relative error [2]. Furthermore, the algorithm is only applicable 
if the value of y is roughly between -700 and 700. 

As our ALU supports the single precision format, 
Schraudolph’s work is not directly applicable to our scenario. 
However, the value b-c can be pre-calculated, thus only two 
operations are required (one addition and one multiplication). 
Furthermore, we conducted the addition and multiplication in 
single precision. 896 is added to the exponent portion of the 
adder’s result (bits 30 to 23) yielding the 11-bit exponent in 
IEEE-754 double precision. The sign of the result is maintained 
along with bits 22 down to 6. This scheme allows us to take 
advantage of Schraudolph’s work in approximating the 
exponential function in hardware. Equation 2 derives the 
application of Schraudolph’s work to the Normal Kernel. As 
shown, the implementation of the Normal Kernel to any value 
x in hardware is thus reduced to one multiplication, on addition 
and one division. This is feasible since the coefficient of x and 
the second addend can be pre-computed for different 
dimensional spaces d and stored in registers. Applying KN(x) 

essentially comes free of charge as the ALU already 
encompasses an adder, a multiplier and a divider in IEEE-754 
format. We noted earlier that the approximation is only valid 
for numbers in the range from -700 to 700. This limitation is 
suitable for our purpose in computing the color probabilities, 
since the value (y-xi) in the Mean-Shift algorithm is less than 
the kernel bandwidth h [1]. Thus, application of the kernel only 
operates on values within the specified range. 

V. SYSTEM EVALUATION 
The proposed system was synthesized, implemented and 

downloaded onto the Xilinx ML405 board with 128MB of 
memory, serial interfacing for connectivity and a Compact 
Flash card of 512MB for data storage. Furthermore, the LLT is 
running on a 50Mhz clock, while the GPP runs at 100Mhz. The 
experiments used images loaded on the Compact Flash card 
where they can be accessed by the system. Note that the system 
could have just as easily communicated, through a memory 
buffer, with a camera attached to the board. However, we opted 
for the current implementation in our setup for flexibility, and 
control. In evaluating the proposed system, our aim is to 
showcase the system’s accuracy, as well as its response time to 
stimuli. 

A. System Accuracy 
The implemented LLT being a tracker, we studied the 

accuracy of the tracker by looking at the trajectory of an object 
over successive image frames. In order to do so, we wrote a 
small program to interact with the driver of the LLT providing 
it with the memory buffer containing the raw RGB bytes that 
the hardware expects along with the memory locations of the 
histograms on which the system operates. The initial location 
of the objects to be tracked has been pre-determined and passed 
on to the hardware. Upon locating the new location of the 
target, the information is used to initialize the hardware for 
processing of the next frame. A total of 50 frames were 
processed, due to storage restrictions, over the course of this 
experiment. The determined location of the object of interest is 
returned by the hardware as a tuple (x, y) representing the 
center of the object. The tuple is collected and used offline to 
visualize the system’s accuracy. Figure 1, depicts the accuracy 
of the LLT tracker implementation by presenting the system’s 
result over the processed frames. The figure showcases the 
location of the target as determined by the hardware in frames 
7, and, 41 (from left to right). As presently implemented, the 
LLT does not deal directly with occlusions nor change in size 
of the object being tracked. The latter however could be 
handled if the software adjusts the bandwidth of the LLT as the 
size of the object changes. 

     
Figure 1. LLT Tracker Results 
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B. Response Time to Stimuli 
In studying the response time of the system, we intend to 

account for the execution time and the communication time 
involved. As thus, for experimental purposes, we considered 
the ideal case of one node with direct serial connection of 9600 
baud rate to a base station. The base station comprises a Xeon 
2.2 Ghz with 1.0 GB of memory; while the sensor node is the 
GPP discussed earlier, capable of being configured as both a 
traditional or smart sensor node. The purpose of the experiment 
is to measure the reaction time of the system to an observation, 
in our case, the displacement of an object beyond a specified 
threshold as the object is tracked. The chosen scenario is 
intended to mirror possible application of a smart node to 
monitor an object of value, such as a Fabergé egg, which is not 
expected to move drastically from its initial location.  

Under the traditional sensor node configuration, the base 
station repeatedly queries the node for the current picture frame 
and computes the location of the target in order to determine 
motion threshold violations. The base station uses the Mean-
Shift tracker implementation from Bilkent University [9]. 
Using the smart node configuration, the base station needs only 
relay the initial location of the target along with the other 
parameters necessary to initialize the LLT and determine 
threshold violation. The smart node is responsible for 
determining motion violation and contacting the base station to 
relay that fact. We set the alarm threshold to be twice that of 
the bandwidth. Note that the threshold depends on pixel 
locations as opposed to calibrated location of the object for 
simplicity. The communication time, tracking time and total 
execution time of both configurations were measured and 
displayed in figure 2. 

An analysis of the figure reveals that the traditional 
configuration computes the new location of the target in a 
fraction of the time taken by the smart node tracker which takes 
an average of 5.9 seconds per frame, which includes 
communication time to notify the base station. On the other 
hand, the smart node spends a fraction of the time 
communicating with the base station; thus, the total execution 
time of the smart node is significantly lower than that of the 
traditional sensor node setup. This is due mainly to the fact that 
the traditional node setup has to transfer over 640*480*3 bytes 
over the serial connection at a rate of 9600 bits per second.  

Due to the Bilkent tracker’s performance on the base 
station, we studied the effect of having a smart node executing 
the tracker on its GPP to determine whether a software-based 
“smart” sensor might be the best solution in terms of reaction 

time to stimuli. Figure 2 shows that the Bilkent tracker 
processed frames within 27.2633 seconds on the GPP. The 
LLT tracker, on the hand accomplished the same feat in 0.8791 
seconds, on average, thereby providing a sizeable improvement 
in response time to any application that should rely on the LLT. 
The considerable difference in execution time between the 
trackers is not surprising as the LLT is hardware-based, which 
explains our motivation in providing such tasks as optimized 
hardware modules based on the sensing devices available on a 
node in order improve response time to stimuli, as opposed to 
simply proposing the use of more powerful nodes. 

VI. CONCLUSION 
Our work has focused on bringing sensor network 

computation to the edge. We have been guided by the need to 
provide a system capable of subsisting in a dynamic 
environment while reducing the response time to stimuli of 
nodes in the network. We have proposed the use of 
reconfigurable hardware dotted with Low Level Tasks, in 
hardware, that are common to the set of applications that can 
be expected to run on a node based on the node’s sensing 
devices. We have implemented one such LLT as a tracker 
based on the Mean-Shift algorithm and have shown the LLT to 
be accurate and very responsive. The improved response time 
of the system can be crucial to time sensitive operations. We 
have thus far focused on the node level in addressing the need 
to have a responsive and dynamic system. Our future work, 
will attempt to address the issue by looking at the network as a 
whole, with multiple nodes present. We hope to use the 
dynamic nature of the herein proposed nodes and their 
increased computational power to provide interoperability 
within sensor network. The current LLT tracker does not 
handle occlusion, which can occur somewhat frequently in a 
dynamic environment. As such, dealing with the issue, would 
be of great value to the proposed work.  
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