
The Swarm Model in Open Source Software
Developer Communities

Xiaohui Cui1, Everett Stiles2, Laura Pullum1, Brian Klump1, Jim Treadwell1,
Justin Beaver1, and Thomas Potok1

1 Oak Ridge National Laboratory, Oak Ridge, TN 37831
{Cuix,pullumll,klumpba,treadwelljn,beaverjm,potokte}@ornl.gov

2 Electrical Engineering and Computer Science Department,University of
Tennessee,Knoxville, TN 37996

{estiles}@utk.edu

Abstract. Most of the current swarm model studies and applications
try to mimic the collective behaviors of social animals, such as birds and
ants. The studies seek to solve tasks similar to patterns and behaviors ex-
hibited in those animal colonies. In this research, we demonstrated that
the swarm model is also the major collaboration and organization model
of Open Source Software (OSS) developer communities. OSS developers
swarm together and spend their time attempting to achieve their rela-
tively simple goals, while their contributions emerged as a collection of
useful and sophisticated functionality that can compete with commercial
software. The results discovered in this research will be helpful in demon-
strating that the swarm model can not only be considered as a feasible
approach to classical optimization problems, but can also be applied to
constructing highly sophisticated systems.

Key words: Swarm Model, OSS, Emergence, Stigmergy

1 Introduction

The swarm model is one of the major results of research on collective behaviors
emerging from social animal or insect groups. More than 50 years ago, biologists
reported that a different kind of intelligence could emerge from some social in-
sects, fish, birds, and mammals [1-2]. For example, African termites can build
mounds that may reach a diameter of 30 m and a height of 6 m [3]. These bi-
ological skyscrapers are built by millions of tiny (1-2 mm long) and completely
blind individuals. There are many more examples of the impressive capabilities
of social insects. However, it is hard to explain the complexity of all the behaviors
at the colony scale level by only considering individuals of the colony. In most
cases, a single insect is not able to find, by itself, an efficient solution to a colony’s
problem, though the society to which it belongs finds, ”as a whole”, a solution
very easily [4]. For a long time, these kinds of collective behaviors emerging from
social insects or animal society have remained mysterious and something hap-
pens as if there was an invisible hand or leader inside the colony that would



2 X. Cui, E. Stiles, L. Pullum, B. Klump, J. Treadwell, J. Beaver, T. Potok

coordinate the individuals’ activities. In 1950, Grasse [3] introduced the concept
of stigmergy in conjunction with his research on termites. His study showed
that a particular configuration of a termite colony’s environment could trigger
a termite to modify its environment, for example, dropping mud in a particular
place to build or maintain the nest. The modification in turn stimulates the orig-
inal or other termites in the colony to further transform their environment. The
concept of stigmergy provides a theory for explaining how distributed, ad hoc
contributions from individuals can lead to the emergence of large collaborative
enterprises. The stigmergy model is considered as part of a swarm model that
is inspired by nature. The typical swarm model in an intelligent system has the
following properties: 1) it is composed of many individuals or agents; 2) the in-
dividuals are relatively homogeneous; 3) the interactions among the individuals
are based on simple behavioral rules that exploit only local information (stig-
mergy); 4) the overall behavior of the system presents higher level of complexity
than does each individual [2]. In recent years, some computer scientists have
adopted the swarm model to solve complex problems and have categorized it as
Swarm Intelligence. Swarm Intelligence is an artificial intelligence technique in-
volving studies of swarm models in decentralized systems. Currently, most of the
swarm intelligence studies and applications try to mimic the collective behaviors
of social insects or animals. They seek to solve tasks strictly by relying on simple
individual capabilities, local interaction mechanisms and indirect communication
(stigmergy). When the swarm model is used to develop a system with a higher
level of sophistication for which no similar phenomenon can be found in social
animals or insects, the relative simplicity of individual agents sometimes raises
questions about their ability to execute such complex cognitive tasks. Recent
publications [5] attempt to prove that the stigmergic swarm model is at least
as powerful as a Turing machine and the swarm model-based system can be a
feasible approach for more sophisticated systems. Considering that most existing
swarm algorithms are inspired from phenomenon of animal colonies in nature,
it will help inspire new swarm intelligence algorithms by going back to nature
to explore the more sophisticated communities that organize and collaborate in
a swarm structure. Recent research [6] indicates that some human communities
are known to display a large amount of distributed and bottom-up structure.
In these communities, the social patterns that people form are often organized
without explicit leaders, chains of command, or fixed communication networks.
Examples of such spontaneously emerging social groups include fans at a sport
stadium, grassroots political movements, terrorist networks, Wikipedia authors,
and open source software (OSS) developer communities. In this paper, we re-
port our research results on the swarm model we discovered in OSS communities.
The result demonstrates that the OSS community and their achievements can
be viewed as a collective intelligence system. The OSS product is the result of
collective workings of individual developers with different motivations and per-
sonal goals. OSS developers swarm together and spend their time attempting
to achieve their relatively simple goals. It is the swarm model adopted by the
OSS community that helps the community merge the collection of useful func-



The Swarm Model in OOS Developer Communities 3

tionality that can compete with commercial software. In the next section, we
first briefly describe the open source software phenomenon along with its sur-
prising impacts on business and society. In section 3, we provide some related
research about OSS communities. In section 4, the experiment design and the
data source are discussed. The experiment results are discussed in section 5 and
the final conclusion is given in section 6.

2 OSS Developer Communities

The OSS developer community is a new kind of online software development
group where participants can read, modify, and redistribute software source code
without cost. Global distributed online communities collaborate to create useful
and sophisticated computer software. The online software development teams
are composed of unaffiliated individuals and organizations who work in a seem-
ingly chaotic fashion and who voluntarily participate in the development team
without direct financial incentive. In recent years, these communities have had a
surprisingly powerful impact. For example, 78 million web server sites now utilize
the software products which were created and freely distributed by the Apache
OSS developer community. Most organizations and individuals can now benefit
directly from the computer programs being produced by these OSS communi-
ties. Yet, all of this has been accomplished by non-paid volunteers and/or by
the employees of corporations who do not directly profit from their employees’
activities. These open source developers operate from remote locations around
the globe, they choose their own tasks, and they work at their own pace. The
result has been described as a kind of ”bazaar” of activity [7]. In the software
development field, a long-held belief is that large scale software development
should be regarded as a collaborative activity to be conducted in a hierarchically
structured organization such as a company. However, many OSS development
systems do not evolve the same as these commercial systems. The distributed
and unplanned OSS development model has been shown to be very effective as
a software development paradigm and outperforms commercial software devel-
opment schemes. The best known examples include the Linux operating system,
which is starting to compete with Microsoft Windows and gradually replace the
Windows operating system which has dominated the computer operating system
market for decades.

3 Related Work

The collaboration and organization models of the OSS community have been ex-
tensively researched. Some efforts to explain the OSS phenomenon refer to OSS
as a new form of organization, a new model for software production, and a new
kind of innovation. Crowston, et al. [8] proposed a model for effective work prac-
tices in OSS development. The model was based largely on an existing model of
group effectiveness initially proposed by Hackman [9] in 1986. Smith, et al. [10]



4 X. Cui, E. Stiles, L. Pullum, B. Klump, J. Treadwell, J. Beaver, T. Potok

presented an agent-based OSS simulation model that includes the software mod-
ules’ complexity, the software’s fitness for purpose, the motivation of developers,
and the role of users in designing requirements. In research on how OSS develop-
ers collaborate, research considers the OSS movement as a self-organizing system
and a collaborative social network [11]. Social Network Analysis (SNA) was used
for analyzing OSS community structure. However, in the OSS community, di-
rect connections between individuals are unusual. They exchange information
through the forum or email-list indirectly. Most of the time, the actor does not
even know who the recipient of his/her message is prior to sending the mes-
sage. Hinds [12] presented that the social network structure of an open source
software project community has no important effect on community success. He
faces the question about ”how open source software project communities can
successfully develop complex artifacts such as software without being impacted
by the social network structures of closure, bridging or leader centrality”. His
hypothesis is - technical artifacts may be substituting for the social network as
a knowledge transfer medium, and that the overall need for knowledge transfer
within an OSS project may be lower than in a traditional team-based project.
The OSS project community is actually neither a traditional ”team” nor a ”com-
munity”, but is a new kind of social entity which is built upon a socio-technical
development process involving extensive interactions between humans and tech-
nical artifacts. This kind of interaction has characteristics similar to those of
the stigmergy model in an insect colony. Elliott [6] argued that collaboration in
small groups (roughly 2-25) relies upon social negotiation to evolve and guide its
process and creative output. Collaboration in large groups (roughly more than
25) is enabled by stigmergy. Heylighen [13] proposed to distinguish stigmergy in
the OSS community as direct and indirect. In OSS development, the unfinished
jobs serve as the direct stigmergy, which stimulates other actors to participate
in finishing the jobs. Indirect stigmergy can be recognized in forums where bugs
or function requests are posted. These forums are regularly consulted by the
developers, thus attracting their attention to tasks that seem worth perform-
ing. Their results partially supported the hypothesis that the swarm model is a
feasible approach for understanding how OSS communities’ collective behaviors
emerge on the system level. However, the numerical research and the mathemat-
ical stigmergy model are not discussed in Elliott’s and Heylighen’s publications.
In our earlier research [14], we proposed a stigmergy collaboration OSS model to
produce a simulation that accurately represents the collaboration phenomenon
in an OSS community. The simulation outputs are compared with the empirical
data retrieved from actual OSS project log information. The simulation is able
to partially reproduce the forum evolution trend in many OSS projects. The
closeness of the simulated results to the empirical data indicates that the stig-
mergy model reflects the collaboration processes that occur in OSS evolution. It
also numerically proved the conclusion made by Elliott [6] and Heylighen [13].



The Swarm Model in OOS Developer Communities 5

4 Experiment Design, Data and Methods

As we discussed in the introduction, the typical swarm model in an intelligent
system has four properties: 1) it is composed of many individuals or agents; 2)
the individuals are relatively homogeneous; 3) there is stigmergic collaboration;
and 4) there is higher level complexity in overall behavior than for each individ-
ual. To prove the swarm model exists in the OSS community, we need to discover
enough evidence from the OSS community to support the hypothesis that the
OSS community has similar properties. Earlier research [7, 14-16] demonstrated
that OSS developers’ continuing contribution of their effort to an OSS project
has an important effect on its success. And many successful OSS projects, such
as Linux, Apache, Eclipse, etc., are the collective contributed results of a very
large number of OSS developers. Our earlier research [14] also demonstrated
that the collaboration in the OSS community is enabled by stigmergy. In OSS
communities, artifacts, such as source code, bug reports, etc., substitute for the
social network as a knowledge transfer medium, and the overall need for knowl-
edge transfer through traditional social network within an open source software
project are much lower than in a traditional team-based project. In an OSS de-
veloper group, while people are much more intelligent than social insects, open
software development uses essentially the same stigmergic mechanism for collab-
oration. Our aim in this research is to prove two additional properties in OSS
communities: the individuals are relatively homogeneous and overall behavior
exhibits a higher level of complexity than do the individuals. Our hypotheses
are: 1) most participants within the OSS community only contribute to a sin-
gle project; 2) most developers are driven to achieve their own objectives while
contributing to the OSS community; and 3) virtually all OSS developers do
not have global knowledge of the entire project. We will demonstrate that OSS
developers’ contributions are limited to a narrow scope within the OSS com-
munity. We highlight details that reveal most developers contribute to a single
project, and loss or addition of any individual developer’s contributions has no
significant effect on the OSS project’s future success. We will address this in two
stages. In the first stage we will use an external database, containing information
about the OSS communities, to analyze developer participation at a community
level. The second stage will encompass the use of OSS project source code ver-
sion control system. Using this record we will examine developers’ contributions
at a project level. In most online hosting environments, project-related actions
are logged and the log information can later be mined to understand the com-
munity structure and interaction patterns. This log data provides enormously
detailed information for analysis [17-18]. We used detailed OSS community log
data on SourceForge to illustrate the model’s theoretical mechanisms. Source-
Forge, an online center for OSS development communities, provides collaborative
resources for approximately 200,000 projects and millions of OSS users and de-
velopers. This data consists of all the activity information of OSS developers
and users registered on SourceForge. The University of Notre Dame [19] hosts
a database which maintains a vast amount of data collected from SourceForge.
The data collection started with a dump of SourceForge’s log content in January



6 X. Cui, E. Stiles, L. Pullum, B. Klump, J. Treadwell, J. Beaver, T. Potok

of 2003. We developed scripts that query the database for OSS project empirical
data that meet our criteria. For example, we eliminated data on projects that
appeared to use SourceForge only as a means to download the software, not
as a development environment. The University of Notre Dame-hosted database
cannot be used to accurately determine a single developer’s contributions to a
given project. We use Concurrent Versions System (CVS) data retrieved from
SourceForge server to bridge this gap and calculate developers’ contributions to a
project. CVS maintains the history of all changes within a project. This system,
an OSS project itself, is used widely throughout the SourceForge community.
Its purpose is to track changes within source code and record appropriate infor-
mation that can be used to revert back to previous versions. This information
includes details on the change along with the author who committed it. By using
the CVS historical record, we are able to get each individual developer’s contri-
bution to a project at any given time by counting the lines of code he/she had
modified or developed at that time. For sophisticated software, we assume that
the percentage of knowledge an OSS developer acquired about the OSS project
depends on how many lines of code he/she contributed and how many source
code files he/she generated. Different from the traditional software development
project, where the software functions are pre-designed by the software develop-
ers before they start the actual programming, the OSS project normally has no
pre-design stage. The functionality of the OSS project is not fixed and it con-
tinually evolves with the OSS developers’ contributions. The more contributions
a developer provides, the more effect the project receives from the developer’s
personal knowledge. In our research, the CVS data was collected directly from
SourceForge through the servers that they provide. Using their system and a
standard CVS client, the entire source code repository for a number of selected
projects was downloaded. Through further use of the CVS client, the project’s
history was extracted using a standard command named ’log’. This is the data
used in the research described in this paper.

5 Results

5.1 Participant’s Community Contributions

To demonstrate our first hypothesis, namely, that most participants within the
OSS community contribute to a single project, we collected data from the Source-
Forge database that reflected participation within OSS projects. The original
data include projects that have been inactive for some time. To receive re-
sults that more accurately describe the month being analyzed, the data was
filtered each month to include only active projects. Active projects were defined
as projects that had issued a software release within the two years prior of the
month being evaluated. For each month that data was available, we calculated
the percentage of developers who participated in one project, two projects, and so
on. The data for each month was an accumulation from all previous months. We
have presented these findings in Fig. 1. An almost constant trend from 2003 to
present can be observed. Data points that reflect participation during the months



The Swarm Model in OOS Developer Communities 7

of July to September 2007 are corrupted due to a privacy issue SourceForge had
with the database that was used. The data demonstrates approximately 85%
of developers on active projects contribute to one project, with less than 4%
of developers contributing to more than three. A linear trend can be extracted
to show that the percentage of developers working on a single project is rising.
Likewise, linear trends show that participation in multiple projects is declining.

Fig. 1. Developer Participation within Active Projects on SourceForge (Jan. 2003 -
July 2009).

5.2 Participant’s Project Contributions

The hypothesis that virtually all developers do not have knowledge of the entire
project can be proved by examining each developer’s participation level within
the project. Our assumption is if the developer does not have any involvement of
one source code file, he will not have the knowledge of this source code file. By
measuring the percentage of files that each developer had made contributions
to within a single project, we can tell each individual developer’s knowledge
level about the projects. SourceForge’s CVS system contained a repository of
information that was used to perform this measurement. We analyzed projects
with the highest amounts of participation during the month of July 2009. Out
of the top 20 projects identified, 10 of these projects, including the top 4, were
available to be analyzed using the CVS repository. We measured the percentage
of files that developers had made contributions to within a single project. A
developer had to edit at least one line of a file to be counted as a contributor.
Measurements are listed in Table 1. The number of participants for each project
and the percentage of files developers contributed to are indicated. Table 1 indi-
cates that developers have a narrow scope within their projects. In some of these
projects, the majority of developers contributed very little to the projects. Since
there are relatively no project members participating in all coding efforts within



8 X. Cui, E. Stiles, L. Pullum, B. Klump, J. Treadwell, J. Beaver, T. Potok

a project, we can conclude that virtually all developers do not have knowledge
of the entire project.

Table 1. Developer’s Scope within Projects

Number of Participants 0% 0%-1% 1%-10% 10%-20% 20%-50% 50%-100%

84 61 16 4 2 0 1
93 0 70 20 0 3 0
94 56 22 10 3 1 0
103 34 40 20 3 6 0
112 28 57 20 7 0 0
129 12 83 28 4 2 0
151 77 53 20 1 0 0
162 73 64 24 1 0 0
249 68 136 44 1 0 0
428 204 184 32 4 3 1

6 Discussion

Past research [20] revealed virtually all participants in the open source commu-
nity started contributing due to a work-related need. This is combined with the
observation that nearly all participants discontinue their contributions within
one year [20]. We can assume that the majority of participants are fueled to
contribute based on those needs. Our research results demonstrated that con-
tributions from each developer were very narrow. Contributions from a single
developer were mainly funneled into a single project and only impacted a small
percentage of that project. This reinforces the notion that developers are driven
to achieve their own objectives while contributing to the open source community.
A very small number of long-term contributors, who likely started contributing
for their own needs, continues to exercise authority over OSS projects. Through
code revisions and software releases, long-term contributors guide the progress
and future of open source projects. In our findings, we discovered some develop-
ers within the open source community that worked on a great number of projects
and others that had contributed to a large portion of the project in which they
were participating. With most participants working to achieve their own goals
and long term contributors maintaining the projects, functioning software is pro-
duced. This conclusion supports our hypothesis that the open source community
software development phenomenon can be explained by modeling the community
as swarm.

7 Conclusion

Currently, most of the swarm intelligence studies and applications try to mimic
the collective behaviors of social insects or animals. This mimicry limited the



The Swarm Model in OOS Developer Communities 9

swarm model algorithms to solving problems that require patterns similar to
those in the social insects or animals. Our research about swarm modeling in the
OSS community expands the swarm intelligence research from the simple animal
colony to the more sophisticated human community. In this paper, we developed
a swarm model in order to explain how useful open source software can be created
by developers who only contribute to satisfy personal needs. We presented our
research results to demonstrate that this swarm model is a reasonably accurate
portrayal of the OSS community, thereby correcting the (relatively) long-held
assumption that it is the OSS community’s intention to work together to achieve
a common ideological goal. While this view does not hold for every contributor,
it represents the views of a large portion of the OSS community. Based on our
research presented in this paper, we have shown that most participants within
the OSS community contribute to a single project and virtually all developers do
not have global knowledge of the entire project. The developers make contribu-
tions based on their personal needs, while their contributions collect and emerge
as a related collection of useful functionality that can compete with commercial
software. The concept of the swarm model in OSS provides a theory for explain-
ing how disparate, distributed, ad hoc contributions from individuals could lead
to the emergence of the largest collaborative enterprises the world has seen. The
results discovered in this research demonstrated that the swarm model can not
only be considered a feasible approach to classical optimization problems, but
also can inspire the computer scientist constructing highly sophisticated intel-
ligent systems. The result will also help scientists explain how loosely formed
open source software developer communities can successfully develop complex
software artifacts.

Acknowledgments. This work was supported in part by the Lockheed Martin
Corporation Shared Vision program. The views and conclusions contained in this
document are those of the authors. This manuscript has been authored by UT-
Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department
of Energy. The United States Government retains and the publisher, by accepting
the article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to do so, for
United States Government purposes.

References

1. Beni, G. and J. Wang (1991). Theoretical problems for the realization of distributed
robotic systems, Sacramento, CA, USA, Publ by IEEE, Piscataway, NJ, USA.

2. Bonabeau, E., M. Dorigo, et al. (1999). Swarm intelligence from natural to artificial
systems. New York, Oxford University Press.

3. Bonabeau, E., F. Henaux, et al. (1998). Routing in telecommunications networks
with ant-like agents. 1437: 60.

4. Camazine, S., J.-L. Deneubourg, et al. (2001). Self-Organization in Biological Sys-
tems. New York, Princeton University Press



10 X. Cui, E. Stiles, L. Pullum, B. Klump, J. Treadwell, J. Beaver, T. Potok

5. Christley, S. and G. Madey (2005). Collection of Activity Data for SourceForge
Projects. Notre Dame, IN, Dept. of Computer Science and Engineering, University
of Notre Dame.

6. Crowston, K., H. Annabi, et al. (2004). Towards a Portfolio of FLOSS Project Suc-
cess Measures. Open Source Workshop of the International Conference on Software
Engineering (ICSE 2004).

7. Cui, X., L. Pullum, et al. (2009). A Stigmergy Approach for Open Source Software
Developer Community Simulation. Symposium on Social Computing Applications
(SCA09). Vancouver, Canada.

8. Elliott, M. (2006). ”Stigmergic Collaboration: The Evolution of Group Work.” M/C
Journal 9(2).

9. Franke, N. and E. v. Hippel (2003). ”Satisfying Heterogeneous User Needs via In-
novation Toolkits: The Case of Apache Security Software.” Research Policy 32(7):
16.

10. Gelernter, D. (1998). Machine Beauty: Elegance And The Heart Of Technology
Basic Books.

11. Ghosh, R., R. Glott, et al. (2002). Free/libre and open source software: survey and
study. FLOSS Report, International Institute of Infonomics, University of Maas-
tricht.

12. Grasse, P.-P., Ed. (1984). Termitologia. Tome II. Fondation des Socits. Paris, Mas-
son.

13. Hackman, J. R. (1986). The Handbook of Organizational Behavior. The design of
work teams. J. W. Lorsch. Englewood Cliffs, NJ, Prentice-Hall.

14. Hann, I.-H. (2002). Delayed returns to open source participation: An empirical
analysis of the Apache HTTP Server Project. Open Source Software : Economics,
Law and Policy. Toulouse, France, Carnegie Mellon University.

15. Hertel, G., S. Niedner, et al. (2003). ”otivation of software developers in open source
projects: An Internet based survey of contributors to the linux kernel.” Research
Policy 32(7): 18.

16. Heylighen, F., Ed. (2007). Why is Open Access Development so Successful? Open
Source Jahrbuch, Lehmanns Media.

17. Hinds, D. and R. M. Lee (2008). Social Network Structure as a Critical Success
Condition for Virtual Communities. Proceedings of the 41st Hawaii International
Conference on System Sciences, Hawaii, IEEE.

18. Jin Xu, Y. G., Scott Christley, Gregory R. Madey (2005). A Topological Analysis
of the Open Souce Software Development Community HICSS 2005.

19. Kuan, J. W. (2001). Open source software as consumer integration into production,
Stanford Institute for Economic Policy Research

20. Lakhani, K. R. and E. v. Hippel (2003). ”How open source software works: ”free”
user-to-user assistance ” Research Policy 32(6): 20.


