

Architecture-Level Dependability Analysis of a Medical
Decision Support System1

1 Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. The United

States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United
States Government purposes.

Laura L. Pullum
Oak Ridge National

Laboratory
P.O. Box 2008, MS-6085

Oak Ridge, TN 37831
1-865-574-4602

PullumLL@ornl.gov

Christopher T. Symons
Oak Ridge National

Laboratory
P.O. Box 2008, MS-6085

Oak Ridge, TN 37831
1-865-241-5952

SymonsCT@ornl.gov

Robert M. Patton
Oak Ridge National

Laboratory
P.O. Box 2008, MS-6085

Oak Ridge, TN 37831
1-865-576-3832

PattonRM@ornl.gov

Barbara G. Beckerman
Oak Ridge National

Laboratory
P.O. Box 2008, MS-6085

Oak Ridge, TN 37831
1-865-576-2681

beckermanbg@ornl.gov

ABSTRACT
Recent advances in techniques such as image analysis, text
analysis and machine learning have shown great potential to assist
physicians in detecting and diagnosing health issues in patients. In
this paper, we describe the approach and findings of an
architecture-level dependability analysis for a mammography
decision support system that incorporates these techniques. The
goal of the research described in this paper is to provide an initial
understanding of the dependability issues, particularly the
potential failure modes and severity, in order to identify areas of
potential high risk. The results will guide design decisions and
provide the basis of a dependability and performance evaluation
program.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification –
reliability, validation.

H.3.4 [Information Storage and Retrieval]: Systems and
Software – performance evaluation (efficiency and effectiveness).

General Terms
Algorithms, Design, Reliability, Verification

Keywords
Architecture-level analysis, failure modes, mammography
images, mammography reports, medical decision support.

1. INTRODUCTION
Various computer-assisted technologies have been developed to
assist radiologists in detecting cancer. Many of these technologies
contain embedded software whose validation and verification

(V&V) process is directly tied to that of the hardware. Recent
advances in machine learning software have great potential to
both extend and refine the usage of the data produced by these
technologies with higher validity of truth. Such software, while
not embedded with a medical device, requires high confidence in
its results to be accepted by potential users (e.g., per the findings
in [4]) and to meet regulatory requirements, e.g., [5, 20].
Unfortunately, V&V of machine learning software that assists
doctors and radiologists has been largely neglected. In order for
machine learning software to be successfully used in clinical
practice, this neglect must be addressed. Hence, this research was
initiated towards ensuring, and providing evidence of, the
dependability of machine learning software for medical decision
support.

Currently, research [1-3] is being conducted to develop a multi-
modal learning framework and tools for the analysis of radiology
images and reports (specifically, mammography, but the
framework and tools could be used in other areas of radiology).
The semi-supervised machine learning framework integrates text
and image modalities by transforming both text and images into
feature vectors, which are produced through text and image
analysis and processing. These vectors are used to find a lower
dimensional space for image analysis that is smooth with respect
to the cancer-specific image similarities described in the
radiological reports. A classifier developed via the framework,
given a set of mammography images as input, would provide an
automated ability to confirm a diagnosis, e.g., abnormal or
normal, and a confidence measure for that diagnosis.

This paper describes preliminary research being conducted to
address the dependability requirements of the previously
described decision support system. The goal of this work is to
provide an initial understanding of the dependability issues,
particularly the potential failure modes and effects at the
architectural level, in order to identify areas of potential high risk.
Section 2 describes the system architecture. Section 3 describes
the architecture-level analysis conducted. Section 4 provides a
summary and Section 5 discusses future work.

© 2010 Association for Computing Machinery. ACM acknowledges
that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government
retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for Government purposes only.

SEHC '10, May 3-4, 2010, Cape Town, South Africa �
ACM 978-1-60558-973-2/10/05 ... $10.00

2. CONCEPTUAL ARCHITECTURE
The system architecture consists of three layers – the Graphical
User Interface (GUI) layer, the Classifier layer, and the Data
layer, organized according to the Model-View-Controller (MVC)
design paradigm [21, 22]. This pattern facilitates separation of
concerns, that is, the Input or Persistent Data Set layer
(Controller), the Processing or Classifier layer (Model), and the
Output or GUI layer (View). Figure 1 illustrates the conceptual
architecture, highlighting the Classifier layer.

The Data layer consists of the data itself and the file system
software handling the volumes of text reports and images used to
train, and eventually, as input to the operational system. It is of
vital importance that the data used to develop the classifier meet
its requirements, e.g., that any links identifying a connection
between an image and a text report be correct. There are many
instances where there will be no text report relating to an image
and that is not, in itself, erroneous. However, if a link is stated, it
must be correct. Although data validity is of great importance to
the validity of the overall system and is part of our overall
research plan, it is not discussed further in this paper.

The GUI layer consists of an interface to retrieve images, and to
present the classification and confidence. Research into
dependability of the operational use of the system will include
analysis of the GUI layer and is also part of our future research.

The Classifier layer has two modes – training and operation. The
Develop Classifier, Discover Graph Kernel, Produce Text
Features, and Preprocess Text Reports modules (within the bold
dashed-outlined box in Figure 1) are used only during training
and are included in the analysis. During training, the classifier is
created via the semi-supervised machine-learning framework that
integrates text and image modalities as described in the
introduction. During operation, the system’s classifier, given a set
of mammography images as input, provides a diagnosis and a
corresponding confidence measure.

The Classifier modules are defined in Table 1 in terms of their
function, input(s), and output(s). The system takes images and
text reports and preprocesses them (in the Preprocess Images and
Preprocess Text Reports modules, respectively), extracting or
isolating the regions and text of interest. Images are preprocessed
to isolate only the breast and the pectoral muscle. Text reports are
preprocessed to remove headers, html or xml tags,
deidentification marks, etc. The preprocessed images and text are
then used to develop the image and text feature spaces and vectors
in Produce Image Features and Produce Text Features modules,
respectively.

The Discover Graph Kernel module uses the image and text
features to find a graph kernel for image classification. Using the
graph kernel, the image classifier is developed (Develop
Classifier module). Finally, the classifier is applied to a new
image and the image is classified, e.g., as normal or abnormal,
and a confidence indicator is provided for the classification.

3. ARCHITECTURE-LEVEL ANALYSIS
For each module, numerous approaches and (sets of) algorithms
can be used to accomplish the desired functionality. The system
consists of three layers, the GUI layer, the Classifier layer, and
the persistent Data layer. The analysis described here is applied to

the Classifier layer. This layer consists of modules responsible for
preprocessing the (text and image) data, analyzing the text reports
and the images, and developing and applying the classifier as
described in Section 2.

Classifier Layer

«subsystem»
Apply Classifier

«subsystem»
Develop Classifier

«subsystem»
Produce Text Features

«subsystem»
Produce Image Features

«subsystem»
Preprocess Text Reports

«subsystem»
Preprocess Images

«subsystem»
GUI

GUI Layer

«subsystem»
Persistent Data Set

Data Layer

«subsystem»
Discover Graph Kernel

text

Key:

Layer Module
Dependency

(uses)Package2
«subsystem»
SubSystem2

Figure 1. Conceptual system architecture

Table 1. Module definitions for Classifier layer

Module Function Input(s) Output(s)

Preprocess
Image (PI)

Isolate image
to contain
only breast
and pectoral

muscle

Mammography
images

Isolated
portions of

images

Produce
Image

Features
(PIF)

Develop the
image feature

space

Isolated
portions of

images

Image feature
vectors

Preprocess
Text

Reports
(PTR)

Clean up the
text report by

removing
unwanted text

Radiologist text
reports

Isolated text

Produce
Text

Features
(PTF)

Develop the
text feature

space
Isolated text

Text feature
vectors

Discover
Graph
Kernel
(DGK)

Use the
images and
text features

to find a
graph kernel

for image
classification

Image feature
vectors; Text

feature vectors;
Links

Graph kernel

Develop
Classifier

(DC)

Develop
classifier to

classify
image, e.g.,
as normal or

abnormal

Graph kernel Classifier

Apply
Classifier

(AC)

Classify an
image;
Provide

confidence
indicator

Classifier
Classification;

Confidence
level

Each step in the functional process of the system is broad in the
types of alternatives and each design decision impacts the
performance and dependability of the system. The architecture-
level analysis presented here provides initial insight into the
system dependability.

To begin, we define the failure domain model for the system.
Table 2 describes the failure model in terms of classification,
confidence in that classification, and severity.

Table 2. System failure model

Classification Confidence
Severit

y

False
Negative

High 5-6

Low 2-3

False Positive High 4-5

Low 2-3

A False Positive occurs when the system classifies the image as
abnormal when it is, in fact, normal. A False Negative occurs
when the system classifies the image as normal when it is actually
abnormal. A Low means the calculated confidence in the
classification is low, providing a sense of uncertainty that
partially mitigates the inaccuracy of the classification. A High
indicates that the calculated confidence in the classification is
high, despite its inaccuracy.

The severity level is an indication of the potential severity of a
given system level effect. The severity scale used here is based on
a typical 6-level scale (defined in Table 3), with 6 being most
severe. For this system, a false negative or false positive result
with high confidence renders the support system unfit for use,
particularly given that a false negative with high confidence can
have life-threatening consequences. A false negative or false
positive result with low confidence would likely result in retesting
(the patient) or reexamination and could be frustrating, causing
the user to complain or not use the “support” tool.

Table 3. Example failure severity scale

Level Description
6 Terminal injury or death
5 Major injury
4 Minor injury
3 Major system problem
2 Minor system problem
1 Slight annoyance

For the purpose of this architecture-level analysis, we generalize
the system failure mode to a single “Incorrect Classification or
Incorrect Confidence”. This is necessary because, at this level of
analysis, one cannot determine, to any significant degree, the
specific impact of a failure mode on the Classification or on the
Confidence measure. The failure model defined in Table 2 will
serve well when module- and lower-level analyses are conducted.

Given the system requirements, failure model, and high-level
description, we initiated an architecture-level dependability
analysis (as in [6], for example). The steps taken and sections in
which they are discussed are:

 Failure Modes and Effects Analysis (FMEA)

o Taxonomy (section 3.1)
o Functional FMEA (section 3.2)
o Detailed software FMEA (section 3.3)

 Fault Tree Analysis (section 3.4).

3.1 Failure Mode Taxonomy
An initial step in the analysis is to examine the system’s failure
modes and effects. A failure mode taxonomy defines the breadth
and depth of failure modes to be considered in the analysis. Using
a combination of failure mode taxonomies (e.g., [9, 10]) as a
basis, we tailored a taxonomy for use in this analysis. The
tailoring includes failure mode space reduction by considering
only those failure modes that are possible given requirements-

based constraints and the architecture level of the analysis. The
resulting taxonomy of failure modes is provided in Figure 2.

The taxonomy defines the failure modes as either function- or
input/output (I/O)-related. The only functional failure mode
considered in this analysis is the incorrect realization of the
module’s functionality. This can result from module
implementation errors.

I/O failure modes refer to the inputs and outputs of a module.
I/O.Amount refers to the number or quantity of input or output.
For example, if the requirements state that the Preprocess Images
module will input a set of 4 mammography images (i.e., top and
side views of left and right breasts) and only one image is
received, then this failure mode is referred to as
I/O.Amount.Too_Little. An I/O.Value.Incorrect failure mode
covers those cases when the input to or output from a module is
incorrect. An I/O.Range.Out_of_Range failure mode occurs when
the I/O value is outside its requirements-specified bounds/limits.
An I/O.Type.Mismatch failure mode includes cases when the
expected I/O type and the actual I/O type do not match. The
taxonomy is used in defining the failure modes as illustrated in
sections 3.2 and 3.3.

Figure 2. Tailored failure mode taxonomy

3.2 Functional FMEA
The process of conducting a software FMEA (failure mode and
effects analysis) helps identify structural weaknesses in the design
and identify missing or incorrect requirements. The primary
purpose of FMEA is to identify possible failure modes of the
system components and evaluate their impact on the system
performance.

Software FMEA is conducted here on two levels – the system-
level or functional FMEA (section 3.2) and the more detailed
level (section 3.3). The functional FMEA examines each module
and for each functional failure mode, determines the local effect
and the effect at the system level. The results of functional FMEA
on the decision support system is provided in Table 4.

Additional analysis at this level can include the detectability and
reversibility of each failure mode’s effect.

3.3 Detailed Software FMEA
The detailed software FMEA examines each module for each I/O
or data failure mode and describes the local effect and the effect
at the system level. Table 5 presents partial results for the detailed
software FMEA, for the Preprocess Images module. Some failure
modes may not be applicable to all modules. For example, in the
system under study, an out of range input does not apply to the
Preprocesses Images module. Other failure modes cause the
system to crash, e.g., an I/O.Amount.Too_Little failure mode.
This failure mode is easy to detect and is an obvious candidate for
mitigation.

Most of the failure modes lead to an “Incorrect Classification or
Incorrect Confidence” effect at the system level. To be most
useful, the modules’ alternative algorithms and their performance
should be analyzed at the next level of detail. This can assist
algorithm selection and the detailed design process.

Table 4. Functional FMEA for Classifier layer modules

Module
Failure
Mode

Local Effect
System
Effect

Preprocess
Images (PI)

Function.
Incorrect_
Realization

Images are
preprocessed
incorrectly; Image
features missing,
incorrect, or
superfluous

Incorrect
Classification
or Incorrect
Confidence

Preprocess
Text
Reports
(PTR)

Function.
Incorrect_
Realization

Text reports
preprocessed
incorrectly; Text
features missing,
incorrect, or
superfluous

Incorrect
Classification
or Incorrect
Confidence

Produce
Image
Features
(PIF)

Function.
Incorrect_
Realization

Incorrect image
features extracted;
image features
missing, incorrect
or superfluous

Incorrect
Classification
or Incorrect
Confidence

Produce
Text
Features
(PTF)

Function.
Incorrect_
Realization

Text features
missing, incorrect
or superfluous

Incorrect
Classification
or Incorrect
Confidence

Discover
Graph
Kernel
(DGK)

Function.
Incorrect_
Realization

Worthless or
skewed feature
space

Incorrect
Classification
or Incorrect
Confidence

Module failure -
crash

System
failure - crash

Develop
Classifier
(DC)

Function.
Incorrect_
Realization

Error in
optimization
routine that sets
the weights;
Effect - bad
classifier

Incorrect
Classification
or Incorrect
Confidence

Apply
Classifier

Function.
Incorrect_

Incorrect
decision;

Incorrect
Classification

(AC) Realization Unwarranted or
incorrect
confidence in
result

or Incorrect
Confidence

Table 5. Partial software FMEA data table for Classifier
layer, Preprocess Images module

Module Failure Mode
Local
Effect

System Effect

Preprocess
Images

(PI)

I/O.Amount.
Too_Much

Missing
information

Incorrect
Classification
or Incorrect
Confidence

I/O.Amount.
Too_Little

Missing
information

Incorrect
Classification
or Incorrect
Confidence

I/O.Amount.
Too_Little

Module
failure

System Failure
(crash)

I/O.Value.
Incorrect_

Value

Missing
input/

information

Incorrect
Classification
or Incorrect
Confidence

I/O.Range.
Out_of_Range

n.a. n.a.

I/O.Type.Data.
Type_Mismatc

h

Missing
information

Incorrect
Classification
or Incorrect
Confidence

3.4 Fault Tree

Fault tree models [9, 10] have long been used for qualitative and
quantitative analysis of the failure modes of critical systems. A
fault tree provides a mathematical and graphical representation of
the combinations of events that can lead to system failure. The
construction of a fault tree model can provide insight into the
system by illuminating potential weaknesses with respect to
dependability. A fault tree can help with the diagnosis of failure
symptoms by illustrating which combinations of events could lead
to failure symptoms that are observed in the field. The
quantitative analysis of a fault tree is used to determine the
probability of system failure, given the probability of occurrence
for events.

Figure 3 presents a partial fault tree for the Classifier layer. The
top-level event is Misclassification or Misdiagnosis. The fault tree
represents the combinations of events that can lead to a
misdiagnosis in the training phase, in the Classifier layer. In
Figure 3, we see that even in this partial fault tree, there are
several events and combinations of events that can lead to a
misdiagnosis. At this time and level of analysis, accurate values
for probabilities of event failures are not available. Given this
uncertainty in the fault tree inputs, a next step in the analysis

could be to use Monte Carlo analysis [14, 15] to propagate failure
uncertainty through the fault tree to determine the expected value
and variance of the top event’s probability. However, analytical
approaches using a) natural language qualifiers of probability
ranges [16, 17] and uncertainty propagation through the fault tree
[18] or b) fuzzy logic and approximate reasoning [19] are more
appropriate at this point.

Misclassification or
Misdiagnosis

Incorrectly Biased
Classifier
Produced

Skewed or
Worthless Feature

Set

Missing, Incorrect
or Superfluous

Feature Set

DC::Function
Incorrect

Realization

DGK::
Function
Incorrect

Realization

PI::Function
Incorrect

Realization

PTF::
Function
Incorrect

Realization

PTR::
Function
Incorrect

Realization

PIF::
Function
Incorrect

Realization

Figure 3. Partial fault tree for the Classifier layer

4. SUMMARY
We have presented the approach and results of preliminary
research to address dependability requirements of an application
of multi-modal learning to medical decision support. The initial
analysis is conducted at the software architecture level and
includes domain analysis to determine the system failure model,
functional and detailed software FMEA, and fault tree
development. The analysis has identified some obvious areas for
failure mode detection and mitigation. Going through the analysis
has also provided valuable insight into the system and its potential
areas of risk, as well as raising awareness of the need for and
value of software dependability.

5. FUTURE WORK
This preliminary research has provided the basis for future
research in machine learning dependability in general and
analysis of the medical decision support system specifically. Near

term analysis includes conducting uncertainty propagation and
analysis with the architecture-level fault tree.

Each module in the architecture has a broad range of possible
approaches and algorithm alternatives, and each design decision
impacts the performance and dependability of the system. Future
research will examine the design alternatives at the module level
and study their impact on system dependability. Additional
research will include performance analysis of the various
alternatives, along with the dependability analysis to enable
design choices that allow a global optimum of dependability and
performance to be reached. An overarching goal of providing
guidance for V&V and dependability analysis (as in [11-13] for
neural networks) for machine learning is envisioned.

6. ACKNOWLEDGMENTS
Our thanks to Robert M. Nishikawa, Ph.D., Department of
Radiology, University of Chicago for providing the large dataset
of mammography data (both reports and images), from which test
subsets were chosen.

Research sponsored by the Laboratory Directed Research and
Development Program of Oak Ridge National Laboratory
(ORNL), managed by UT-Battelle, LLC for the U. S. Department
of Energy under Contract No. DE-AC05-00OR22725.

7. REFERENCES
[1] Symons, C.T., Kerekes, R., Paquit, V.C., Patton, R.,

Gleason, S.S., and Beckerman, B. 2009. A multimodal, semi-
supervised learning system for building better decision
support systems for the analysis of mammograms. In
Radiological Society of North America 95th Scientific
Assembly and Annual Meeting Program (Oak Brook, Ill.
USA). RSNA 2009. SSA11-08.

[2] Patton, R. M., Beckerman, B. G., and Potok, T. E. 2008.
Analysis of mammography reports using maximum variation
sampling. In Proceedings of the 4th GECCO Workshop on
Medical Applications of Genetic and Evolutionary
Computation (Atlanta, USA). MedGEC’08. ACM Press,
New York, NY.

[3] Patton, R. M., Potok, T. E., Beckerman, B. G., and
Treadwell, J. N. 2009. A genetic algorithm for learning
significant phrase patterns in radiology reports. In
Proceedings of the 5th GECCO Workshop on Medical
Applications of Genetic and Evolutionary Computation
(Montreal, Canada, July 2009). MedGEC’09. ACM Press,
New York, NY.

[4] Varonen, H., Kortteisto, T., and Kaila, M. 2008. What may
help or hinder the implementation of computerized decision
support systems (CDSSs): a focus group study with
physicians. Family Practice 2008; 25: 162-167.

[5] U.S. Food and Drug Administration. October 21, 2009. Draft
Guidance for Industry and FDA Staff: Computer-Assisted
Detection Devices Applied to Radiology Images and
Radiology Device Data – Premarket Notification [510(k)]
Submissions. Center for Devices and Radiological Health.

[6] Tekinerdogan, B., Sozer, H., and Aksit, M. 2008. Software
architecture reliability analysis using failure scenarios.
Journal of Systems and Software 81 (2008) 558-575.

[7] Li, B., Li, M., Ghose, S., and Smidts, C. 2003. Integrating
Software into PRA. In Proceedings of the 14th International
Symposium on Software Reliability Engineering.
(ISSRE’03).

[8] Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C.
2004. Basic concepts and taxonomy of dependable and
secure computing. IEEE Transactions on Dependable and
Secure Computing. 1 (Jan.-Mar. 2004) 11-33.

[9] Ye, F., and Kelly, T. 2004. Contract-based justification for
COTS component within safety-critical applications. In 9th
Australian Workshop on Safety Related Programmable
Systems (Brisbane, Australia, 2004). SCS’04. Australian
Computer Society, Inc. 13-22.

[10] Pullum, L. L., and Dugan, J. B. 1996. Fault tree models for
the analysis of complex computer-based systems. In
Proceedings of the Annual Reliability and Maintainability
Symposium. RAMS’96. 200-207.

[11] Taylor, B. J., Darrah, M. A., Pullum, L. L., et al. 2005.
Methods and Procedures for the Verification and Validation
of Neural Networks. Brian Taylor, ed., Springer-Verlag,
2005.

[12] Pullum, L. L., Taylor, B. J., and Darrah, M. A. 2007.
Guidance for the Verification and Validation of Neural
Networks. IEEE Computer Society Press (Wiley), 2007.

[13] Pullum, L. L., Darrah, M. A., and Taylor, B. J. 2004.
Independent verification and validation of neural networks –
developing practitioner assistance. Software Tech News.
July, 2004.

[14] Hickman, J.W., et al. 1983. PRA procedures guide: A guide
to the performance of probabilistic risk assessments for
nuclear power plants. USA: Nuclear Regulatory
Commission. NUREG/CR-2300, 1983.

[15] Ripley, B.D. 1987. Stochastic simulation. Wiley, 1987.

[16] Beyth-Marom, R. 1982. How probable is probable? A
numerical translation of verbal probability expressions.
Journal Forecast 1982. I:257-269.

[17] Wallsten, T.S., Budescu, D.V., Rappaport, A., Zwick, R.,
and Forsyth, B. 1986. Measuring the vague meanings of
probability terms. Journal Experimental Psychology: General
1986. 115(4):348-365.

[18] Hauptmanns, U. 2002. Analytical propagation of
uncertainties through fault trees. Reliability Engineering and
System Safety 76 (2002) 327-329.

[19] Pillay, A., and Wang, J. 2003. Modified failure mode and
effects analysis using approximate reasoning. Reliability
Engineering and System Safety 79 (2003) 69-85.

[20] U.S. Food and Drug Administration. May 11, 2005.
Guidance for Industry and FDA Staff: Guidance for the
Content of Premarket Submissions for Software Contained in
Medical Devices. Center for Devices and Radiological
Health and Center for Biologics Evaluation and Research.

[21] Reenskaug, T. 1979. THING-MODEL-VIEW-EDITOR - an
example from a planning system. Technical note, Xerox
PARC, May 1979.

[22] Reenskaug, T. 1979. MODELS - VIEWS -
CONTROLLERS. Technical note, Xerox PARC, December

1979.

