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ABSTRACT 
Recent advances in techniques such as image analysis, text 
analysis and machine learning have shown great potential to assist 
physicians in detecting and diagnosing health issues in patients. In 
this paper, we describe the approach and findings of an 
architecture-level dependability analysis for a mammography 
decision support system that incorporates these techniques. The 
goal of the research described in this paper is to provide an initial 
understanding of the dependability issues, particularly the 
potential failure modes and severity, in order to identify areas of 
potential high risk. The results will guide design decisions and 
provide the basis of a dependability and performance evaluation 
program. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification – 
reliability, validation. 

H.3.4 [Information Storage and Retrieval]: Systems and 
Software – performance evaluation (efficiency and effectiveness). 

General Terms 
Algorithms, Design, Reliability, Verification 

Keywords 
Architecture-level analysis, failure modes, mammography 
images, mammography reports, medical decision support. 

1. INTRODUCTION 
Various computer-assisted technologies have been developed to 
assist radiologists in detecting cancer. Many of these technologies 
contain embedded software whose validation and verification 

(V&V) process is directly tied to that of the hardware. Recent 
advances in machine learning software have great potential to 
both extend and refine the usage of the data produced by these 
technologies with higher validity of truth. Such software, while 
not embedded with a medical device, requires high confidence in 
its results to be accepted by potential users (e.g., per the findings 
in [4]) and to meet regulatory requirements, e.g., [5, 20]. 
Unfortunately, V&V of machine learning software that assists 
doctors and radiologists has been largely neglected.  In order for 
machine learning software to be successfully used in clinical 
practice, this neglect must be addressed. Hence, this research was 
initiated towards ensuring, and providing evidence of, the 
dependability of machine learning software for medical decision 
support. 

Currently, research [1-3] is being conducted to develop a multi-
modal learning framework and tools for the analysis of radiology 
images and reports (specifically, mammography, but the 
framework and tools could be used in other areas of radiology). 
The semi-supervised machine learning framework integrates text 
and image modalities by transforming both text and images into 
feature vectors, which are produced through text and image 
analysis and processing. These vectors are used to find a lower 
dimensional space for image analysis that is smooth with respect 
to the cancer-specific image similarities described in the 
radiological reports. A classifier developed via the framework, 
given a set of mammography images as input, would provide an 
automated ability to confirm a diagnosis, e.g., abnormal or 
normal, and a confidence measure for that diagnosis. 

This paper describes preliminary research being conducted to 
address the dependability requirements of the previously 
described decision support system. The goal of this work is to 
provide an initial understanding of the dependability issues, 
particularly the potential failure modes and effects at the 
architectural level, in order to identify areas of potential high risk. 
Section 2 describes the system architecture. Section 3 describes 
the architecture-level analysis conducted. Section 4 provides a 
summary and Section 5 discusses future work. 
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2. CONCEPTUAL ARCHITECTURE 
The system architecture consists of three layers – the Graphical 
User Interface (GUI) layer, the Classifier layer, and the Data 
layer, organized according to the Model-View-Controller (MVC) 
design paradigm [21, 22]. This pattern facilitates separation of 
concerns, that is, the Input or Persistent Data Set layer 
(Controller), the Processing or Classifier layer (Model), and the 
Output or GUI layer (View). Figure 1 illustrates the conceptual 
architecture, highlighting the Classifier layer.  

The Data layer consists of the data itself and the file system 
software handling the volumes of text reports and images used to 
train, and eventually, as input to the operational system. It is of 
vital importance that the data used to develop the classifier meet 
its requirements, e.g., that any links identifying a connection 
between an image and a text report be correct. There are many 
instances where there will be no text report relating to an image 
and that is not, in itself, erroneous. However, if a link is stated, it 
must be correct. Although data validity is of great importance to 
the validity of the overall system and is part of our overall 
research plan, it is not discussed further in this paper. 

The GUI layer consists of an interface to retrieve images, and to 
present the classification and confidence. Research into 
dependability of the operational use of the system will include 
analysis of the GUI layer and is also part of our future research. 

The Classifier layer has two modes – training and operation. The 
Develop Classifier, Discover Graph Kernel, Produce Text 
Features, and Preprocess Text Reports modules (within the bold 
dashed-outlined box in Figure 1) are used only during training 
and are included in the analysis. During training, the classifier is 
created via the semi-supervised machine-learning framework that 
integrates text and image modalities as described in the 
introduction. During operation, the system’s classifier, given a set 
of mammography images as input, provides a diagnosis and a 
corresponding confidence measure. 

The Classifier modules are defined in Table 1 in terms of their 
function, input(s), and output(s). The system takes images and 
text reports and preprocesses them (in the Preprocess Images and 
Preprocess Text Reports modules, respectively), extracting or 
isolating the regions and text of interest. Images are preprocessed 
to isolate only the breast and the pectoral muscle. Text reports are 
preprocessed to remove headers, html or xml tags, 
deidentification marks, etc. The preprocessed images and text are 
then used to develop the image and text feature spaces and vectors 
in Produce Image Features and Produce Text Features modules, 
respectively.  

The Discover Graph Kernel module uses the image and text 
features to find a graph kernel for image classification. Using the 
graph kernel, the image classifier is developed (Develop 
Classifier module). Finally, the classifier is applied to a new 
image and the image is classified, e.g., as normal or abnormal, 
and a confidence indicator is provided for the classification. 

3. ARCHITECTURE-LEVEL ANALYSIS 
For each module, numerous approaches and (sets of) algorithms 
can be used to accomplish the desired functionality. The system 
consists of three layers, the GUI layer, the Classifier layer, and 
the persistent Data layer. The analysis described here is applied to 

the Classifier layer. This layer consists of modules responsible for 
preprocessing the (text and image) data, analyzing the text reports 
and the images, and developing and applying the classifier as 
described in Section 2. 
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Figure 1. Conceptual system architecture 

 

Table 1. Module definitions for Classifier layer 

Module Function Input(s) Output(s) 

Preprocess 
Image (PI) 

Isolate image 
to contain 
only breast 
and pectoral 

muscle 

Mammography 
images 

Isolated 
portions of 

images 

Produce 
Image 

Features 
(PIF) 

Develop the 
image feature 

space 

Isolated 
portions of 

images 

Image feature 
vectors 

Preprocess 
Text 

Reports 
(PTR) 

Clean up the 
text report by 

removing 
unwanted text 

Radiologist text 
reports 

Isolated text 

Produce 
Text 

Features 
(PTF) 

Develop the 
text feature 

space 
Isolated text 

Text feature 
vectors 

Discover 
Graph 
Kernel 
(DGK) 

Use the 
images and 
text features 

to find a 
graph kernel 

for image 
classification 

Image feature 
vectors; Text 

feature vectors; 
Links 

Graph kernel 

Develop 
Classifier 

(DC) 

Develop 
classifier to 

classify 
image, e.g., 
as normal or 

abnormal 

Graph kernel Classifier 

Apply 
Classifier 

(AC) 

Classify an 
image; 
Provide 

confidence 
indicator 

Classifier 
Classification; 

Confidence 
level 

 

Each step in the functional process of the system is broad in the 
types of alternatives and each design decision impacts the 
performance and dependability of the system. The architecture-
level analysis presented here provides initial insight into the 
system dependability. 

To begin, we define the failure domain model for the system. 
Table 2 describes the failure model in terms of classification, 
confidence in that classification, and severity. 

 

Table 2. System failure model 

Classification Confidence 
Severit

y 

False 
Negative 

High 5-6 

Low 2-3 

False Positive High 4-5 

Low 2-3 

 

A False Positive occurs when the system classifies the image as 
abnormal when it is, in fact, normal. A False Negative occurs 
when the system classifies the image as normal when it is actually 
abnormal. A Low means the calculated confidence in the 
classification is low, providing a sense of uncertainty that 
partially mitigates the inaccuracy of the classification. A High 
indicates that the calculated confidence in the classification is 
high, despite its inaccuracy. 

The severity level is an indication of the potential severity of a 
given system level effect. The severity scale used here is based on 
a typical 6-level scale (defined in Table 3), with 6 being most 
severe. For this system, a false negative or false positive result 
with high confidence renders the support system unfit for use, 
particularly given that a false negative with high confidence can 
have life-threatening consequences. A false negative or false 
positive result with low confidence would likely result in retesting 
(the patient) or reexamination and could be frustrating, causing 
the user to complain or not use the “support” tool.  

 

Table 3. Example failure severity scale 

Level Description 
6 Terminal injury or death 
5 Major injury 
4 Minor injury 
3 Major system problem 
2 Minor system problem 
1 Slight annoyance 

 

For the purpose of this architecture-level analysis, we generalize 
the system failure mode to a single “Incorrect Classification or 
Incorrect Confidence”. This is necessary because, at this level of 
analysis, one cannot determine, to any significant degree, the 
specific impact of a failure mode on the Classification or on the 
Confidence measure. The failure model defined in Table 2 will 
serve well when module- and lower-level analyses are conducted. 

Given the system requirements, failure model, and high-level 
description, we initiated an architecture-level dependability 
analysis (as in [6], for example). The steps taken and sections in 
which they are discussed are: 

 Failure Modes and Effects Analysis (FMEA) 

o Taxonomy (section 3.1) 
o Functional FMEA (section 3.2) 
o Detailed software FMEA (section 3.3) 

 Fault Tree Analysis (section 3.4). 

3.1 Failure Mode Taxonomy 
An initial step in the analysis is to examine the system’s failure 
modes and effects. A failure mode taxonomy defines the breadth 
and depth of failure modes to be considered in the analysis. Using 
a combination of failure mode taxonomies (e.g., [9, 10]) as a 
basis, we tailored a taxonomy for use in this analysis. The 
tailoring includes failure mode space reduction by considering 
only those failure modes that are possible given requirements-



 

based constraints and the architecture level of the analysis. The 
resulting taxonomy of failure modes is provided in Figure 2. 

The taxonomy defines the failure modes as either function- or 
input/output (I/O)-related. The only functional failure mode 
considered in this analysis is the incorrect realization of the 
module’s functionality. This can result from module 
implementation errors.  

I/O failure modes refer to the inputs and outputs of a module. 
I/O.Amount refers to the number or quantity of input or output. 
For example, if the requirements state that the Preprocess Images 
module will input a set of 4 mammography images (i.e., top and 
side views of left and right breasts) and only one image is 
received, then this failure mode is referred to as 
I/O.Amount.Too_Little. An I/O.Value.Incorrect failure mode 
covers those cases when the input to or output from a module is 
incorrect. An I/O.Range.Out_of_Range failure mode occurs when 
the I/O value is outside its requirements-specified bounds/limits. 
An I/O.Type.Mismatch failure mode includes cases when the 
expected I/O type and the actual I/O type do not match. The 
taxonomy is used in defining the failure modes as illustrated in 
sections 3.2 and 3.3. 

 

 

Figure 2. Tailored failure mode taxonomy 

 

3.2 Functional FMEA 
The process of conducting a software FMEA (failure mode and 
effects analysis) helps identify structural weaknesses in the design 
and identify missing or incorrect requirements. The primary 
purpose of FMEA is to identify possible failure modes of the 
system components and evaluate their impact on the system 
performance. 

Software FMEA is conducted here on two levels – the system-
level or functional FMEA (section 3.2) and the more detailed 
level (section 3.3). The functional FMEA examines each module 
and for each functional failure mode, determines the local effect 
and the effect at the system level. The results of functional FMEA 
on the decision support system is provided in Table 4. 

Additional analysis at this level can include the detectability and 
reversibility of each failure mode’s effect. 

3.3 Detailed Software FMEA 
The detailed software FMEA examines each module for each I/O 
or data failure mode and describes the local effect and the effect 
at the system level. Table 5 presents partial results for the detailed 
software FMEA, for the Preprocess Images module. Some failure 
modes may not be applicable to all modules. For example, in the 
system under study, an out of range input does not apply to the 
Preprocesses Images module. Other failure modes cause the 
system to crash, e.g., an I/O.Amount.Too_Little failure mode. 
This failure mode is easy to detect and is an obvious candidate for 
mitigation. 

Most of the failure modes lead to an “Incorrect Classification or 
Incorrect Confidence” effect at the system level. To be most 
useful, the modules’ alternative algorithms and their performance 
should be analyzed at the next level of detail. This can assist 
algorithm selection and the detailed design process. 

 

 

Table 4. Functional FMEA for Classifier layer modules 

Module 
Failure 
Mode 

Local Effect 
System 
Effect 

Preprocess 
Images (PI) 

Function. 
Incorrect_ 
Realization 

Images are 
preprocessed 
incorrectly; Image 
features missing, 
incorrect, or 
superfluous 

Incorrect 
Classification 
or Incorrect 
Confidence 

Preprocess 
Text 
Reports 
(PTR) 

Function. 
Incorrect_ 
Realization 

Text reports 
preprocessed 
incorrectly; Text 
features missing, 
incorrect, or 
superfluous 

Incorrect 
Classification 
or Incorrect 
Confidence 

Produce 
Image 
Features 
(PIF) 

Function. 
Incorrect_ 
Realization 

Incorrect image 
features extracted; 
image features 
missing, incorrect 
or superfluous 

Incorrect 
Classification 
or Incorrect 
Confidence 

Produce 
Text 
Features 
(PTF) 

Function. 
Incorrect_ 
Realization 

Text features 
missing, incorrect 
or superfluous 

Incorrect 
Classification 
or Incorrect 
Confidence 

Discover 
Graph 
Kernel 
(DGK) 

Function. 
Incorrect_ 
Realization 

Worthless or 
skewed feature 
space 

Incorrect 
Classification 
or Incorrect 
Confidence 

Module failure - 
crash 

System 
failure - crash 

Develop 
Classifier 
(DC) 

Function. 
Incorrect_ 
Realization 

Error in 
optimization 
routine that sets 
the weights; 
Effect - bad 
classifier 

Incorrect 
Classification 
or Incorrect 
Confidence 

Apply 
Classifier 

Function. 
Incorrect_ 

Incorrect 
decision; 

Incorrect 
Classification 



 

(AC) Realization Unwarranted or 
incorrect 
confidence in 
result 

or Incorrect 
Confidence 

 

 

 

 

Table 5. Partial software FMEA data table for Classifier 
layer, Preprocess Images module 

Module Failure Mode 
Local 
Effect 

System Effect 

Preprocess 
Images 

(PI) 

I/O.Amount. 
Too_Much 

Missing 
information 

Incorrect 
Classification 
or Incorrect 
Confidence 

I/O.Amount. 
Too_Little 

Missing 
information 

Incorrect 
Classification 
or Incorrect 
Confidence 

I/O.Amount. 
Too_Little 

Module 
failure 

System Failure 
(crash) 

I/O.Value. 
Incorrect_ 

Value 

Missing 
input/ 

information 

Incorrect 
Classification 
or Incorrect 
Confidence 

I/O.Range. 
Out_of_Range 

n.a. n.a. 

I/O.Type.Data. 
Type_Mismatc

h 

Missing 
information 

Incorrect 
Classification 
or Incorrect 
Confidence 

 

 

3.4 Fault Tree 

Fault tree models [9, 10] have long been used for qualitative and 
quantitative analysis of the failure modes of critical systems. A 
fault tree provides a mathematical and graphical representation of 
the combinations of events that can lead to system failure. The 
construction of a fault tree model can provide insight into the 
system by illuminating potential weaknesses with respect to 
dependability. A fault tree can help with the diagnosis of failure 
symptoms by illustrating which combinations of events could lead 
to failure symptoms that are observed in the field. The 
quantitative analysis of a fault tree is used to determine the 
probability of system failure, given the probability of occurrence 
for events. 

Figure 3 presents a partial fault tree for the Classifier layer. The 
top-level event is Misclassification or Misdiagnosis. The fault tree 
represents the combinations of events that can lead to a 
misdiagnosis in the training phase, in the Classifier layer. In 
Figure 3, we see that even in this partial fault tree, there are 
several events and combinations of events that can lead to a 
misdiagnosis. At this time and level of analysis, accurate values 
for probabilities of event failures are not available. Given this 
uncertainty in the fault tree inputs, a next step in the analysis 

could be to use Monte Carlo analysis [14, 15] to propagate failure 
uncertainty through the fault tree to determine the expected value 
and variance of the top event’s probability. However, analytical 
approaches using a) natural language qualifiers of probability 
ranges [16, 17] and uncertainty propagation through the fault tree 
[18] or b) fuzzy logic and approximate reasoning [19] are more 
appropriate at this point. 

 

 

 

Misclassification or 
Misdiagnosis

Incorrectly Biased 
Classifier 
Produced

Skewed or 
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Incorrect 

Realization

 

 

Figure 3. Partial fault tree for the Classifier layer 

 

4. SUMMARY 
We have presented the approach and results of preliminary 
research to address dependability requirements of an application 
of multi-modal learning to medical decision support. The initial 
analysis is conducted at the software architecture level and 
includes domain analysis to determine the system failure model, 
functional and detailed software FMEA, and fault tree 
development. The analysis has identified some obvious areas for 
failure mode detection and mitigation. Going through the analysis 
has also provided valuable insight into the system and its potential 
areas of risk, as well as raising awareness of the need for and 
value of software dependability. 

5. FUTURE WORK 
This preliminary research has provided the basis for future 
research in machine learning dependability in general and 
analysis of the medical decision support system specifically. Near 



 

term analysis includes conducting uncertainty propagation and 
analysis with the architecture-level fault tree. 

Each module in the architecture has a broad range of possible 
approaches and algorithm alternatives, and each design decision 
impacts the performance and dependability of the system. Future 
research will examine the design alternatives at the module level 
and study their impact on system dependability. Additional 
research will include performance analysis of the various 
alternatives, along with the dependability analysis to enable 
design choices that allow a global optimum of dependability and 
performance to be reached. An overarching goal of providing 
guidance for V&V and dependability analysis (as in [11-13] for 
neural networks) for machine learning is envisioned. 
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