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ABSTRACT 

We implemented a scalable parallel quasi-Monte Carlo numerical high-dimensional 
integration for tera-scale data points. The implemented algorithm uses the Sobol’s quasi-
sequences to generate random samples. Sobol’s sequence was used to avoid clustering effects 
in the generated random samples and to produce low-discrepancy random samples which 
cover the entire integration domain. The performance of the algorithm was tested.  Obtained 
results prove the scalability and accuracy of the implemented algorithms. The implemented 
algorithm could be used in different applications where a huge data volume is generated and 
numerical integration is required. We suggest using the hyprid MPI and OpenMP 
programming model to improve the performance of the algorithms. If the mixed model is 
used, attention should be paid to the scalability and accuracy. 
 
 
 
 
 
 

1. INTRODUCTION 

Computational Science contributes significantly to most disciplines.  Initially, science was 
primarily empirical.  More recently, each discipline has developed a new theoretical 
component. Theoretical models play an important role in motivating experiments and 
generalizing our understanding. In the last 50 years, a computational branch has grown in 
different disciplines. It has grown out of our inability to find closed form solutions for 
complex mathematical models. Computers can simulate these complex models 
 
Information management makes  scientists and engineers  face mountains of data that stem 
from different areas such as: the flood of data from new scientific instruments driven by 
Moore’s Law – doubling their data output every year or so, the flood of data from 
simulations, the ability to economically store petabytes of data online, and the internet and 
computational grid that makes all these archives accessible to anyone anywhere, allowing the 
replication, creation, and recreation of more data2.  
 
The volume of data produced by different science and engineering applications is enormous.  
Acquisition, organization, query, and visualization tasks scale almost linearly with data 
volumes.  By using parallelism, these problems can be solved within fixed times (minutes or 
hours). Some tasks do not scale linearly with the data volumes which makes challenging to 
analyze these data.  If the data increases a thousand-fold, the work and time to process these 
data can grow by a significant factor. Many algorithms scale even worse with data volumes. 
Algorithms with poor scalability are infeasible for terabyte-scale or higher scale datasets.  
 
Most current applications in science and engineering produce huge amounts of data. Data 
size ranges from regular scale up to exascale. Small data sets can be analyzed using serial 
computation, simple computing resources, and regular hardware architectures.  As the data 
size gets larger and larger, the demand for supercomputing resources increases 



 

 

proportionally. There are serious exascale problems that just cannot be solved in any 
reasonable amount of time with the available computers. The next generation of 
supercomputers could be used to solve big programming problems and allow for the 
development of a new generation of scientific and engineering applications.  
 
Different supercomputers are now available around the world.  The world's fastest 
supercomputer today, a Cray XT5 system at Oak Ridge National Laboratory that's known as 
Jaguar and shown in Figure 1, has a peak performance of 2.3 petaflops. A petaflop is a 
quadrillion, or 1,000 trillion, sustained floating-point operations per second. 

 

 
Fig. 1.  Jaguar Supercomputer at Oak Ridge National Laboratory.1 

 
 
 

In this research, different multidimensional integration algorithms were explored. The 
explored algorithms were tested for parallelization suitability. The selected algorithms will be 
used to compute a four dimensional integral for up to 1012 data points of neutron scattering 
application 
 
 
 The range of Monte Carlo applications is enormous, from the simulation of galactic 
formation to quantum chromodynamics to the solution of systems of linear equations. Our 
implemented algorithm could be used for all applications similar to our neutron scattering 
problem.   
 

 



 

 

2. BACKGROUND 

2.1 NEUTRON SCATTERING 

X-ray and neutron scattering are very useful techniques in the study of the properties of 
solids. x-rays are limited in applications due to the high energy of the sources on which 
typical x-rays are generated. The energy of sources is on the order of several thousand 
electron volts. This energy is much greater than the average excitation of materials found at 
room temperature. This makes x-rays particularly well-suited for the study of static 
properties of systems. Neutrons, on the other hand, have thermal energies on the order of 
milli-electron volts; the energy range of lattice and spin excitations in solids. Therefore, 
neutron scattering is a very powerful probe of both statics and dynamics in solids. The 
neutron also has a known spin, which interacts with other magnetic moments within a 
material.  Thus, neutron scattering can be used as a technique to probe magnetic structures 
and excitations as well as lattice structure and excitations.  
 
Neutron scattering can be elastic as shown in Figure 2 or inelastic as shown in Figure 3. 
Inelastic scattering is an experimental technique commonly used in condensed matter 
research to study atomic and molecular motion as well as magnetic and crystal field 
excitations. It distinguishes itself from elastic neutron scattering techniques by resolving the 
change in kinetic energy that occurs when the collision between neutrons and the sample is 
an inelastic one. Results are generally communicated as the dynamic structure factor (also 
called inelastic scattering law) S(q,ω), or as the dynamic susceptibility χ(q,ω) where the 
scattering vector q is the difference between incoming and outgoing wave vector, and  is 
the energy change experienced by the sample (negative that of the scattered neutron). When 
results are plotted as a function of ω, they can often be interpreted in the same way as spectra 
obtained by conventional spectroscopic techniques; that is, inelastic neutron scattering can be 
seen as a special spectroscopy12. 
 



 

 

 
Fig.2. Elastic Neutron Scattering12  

 
 
 
 

 
Fig. 3. Inelastic Neutron Scattering12 

 
 
 
 
 
 



 

 

2.2 NUMERICAL INTEGRATION METHODS 

    Numerical computation of a definite integral of a function of several variables is one of the 
basic problems in numerical analysis. The problem is considered hard due to the curse of 
dimensionality, i.e. the computing cost is growing exponentially with the dimension of the 
problem. The numerical solution of integration problems sometimes requires extensive 
computation. Therefore, substantial effort has been invested in finding ways to exploit the 
power of advanced computer architectures like vector or parallel computers to increase the 
efficiency of algorithms.   
 
      A review of existing algorithms for numerical integration of multivariate functions was 
presented by Thomas Gerstner and Michael Griebel6.  Some of the presented integration 
algorithms use sparse grids to estimate the integrations. Some of the sparse grid methods 
examined were the Trapezoidal rule, Clenshaw-Curtis formulas, Gauss, and Gauss-Patterson 
formulas are examples of sparse grid methods examined. These formulas are examples of 
nested univariate quadrature formulas. Nested formulas perform multidimensional 
integration by recursively calling one dimensional integration formulas. 
 
Monte Carlo integration is one of the most widely used methods in multidimensional 
integration. It is also considered among the most accurate methods in different applications1. 
The Monte Carlo method interprets the integrand function as a random variable, and 
estimates the multidimensional integration by the statistical average over independent, 
identically distributed samples . The samples are generated using pseudo-random 
sequences. The integral can be written as  
 
 

                       

 
The Monte Carlo method converges7 at the rate of . It is superior to the Newton-
Cotes formula for high dimensional problems. One key factor that slows the convergence of 
Monte Carlo method is using the pseudo-random sequences to generate the random samples. 
The implementation of pseudo-random sequences produced a clustering effect which slows 
the convergence of the Monte Carlo method. Many attempts were made to improve the 
convergence of the Monte Carlo method. The quasi-Monte Carlo method is an improved 
version of the Monte Carlo method. It uses deterministic sequences, called quasi-random or 
low discrepancy, sequences instead of pseudo-random sequences. Quasi-random sequences 
have the advantage of uniformity of generated samples which can be quantified by its 
discrepancy, where sequences with low discrepancy are closer to uniformity.  6. Examples of 
generated sequences are shown in Figure 4.  
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 

  

 
 
 
 
 
 
 
 
 
 

  

 
Fig.4.   points Sequences examples 

 
 

2.3  PARALLEL PROGRAMMING CHALLENGES 

Parallel programming is intended to achieve high performance computing. In parallel 
programming, there is no general framework to implement parallel programs for different 
software applications. Programmers face four immediate challenges when writing parallel 
programs: scalability, correctness, maintainability, and problem decomposition. There are 
two types of problem decomposition: functional decomposition, and data or domain 
decomposition.  
 
Functional decomposition is used to introduce concurrency in the problems that can be 
solved by different independent tasks. All these tasks can run concurrently. On the other 
hand, data decomposition works best on an application with large data structure. A task is 
decomposed by partitioning the data on which computations are performed.  The tasks 
performed on the data partitions are usually similar. 
 
Parallel overhead is another parallel programming challenge. Parallel overhead refers to the 
amount of time required to coordinate parallel tasks as opposed to doing useful work. Parallel 
overhead typically includes the time to start and terminate a task, the time to pass messages 
between tasks, synchronization time, and other extra computation time.  
 
Synchronization is necessary in multithreading programs to prevent race conditions. It limits 
parallel efficiency even more than overhead in that it serializes parts of the program7. Load 
balancing refers to the practice of distributing work among tasks so that all processes are kept 



 

 

busy all of the time. It can be considered a minimization of process idle time. Load balancing 
is important to parallel programs for performance reasons. For example, if all tasks are 
subject to a barrier synchronization point, the slowest task will determine the overall 
performance. For this reason, load balancing is considered one of the reasons behind poor 
scalability. 
 
As discussed before, the goal of writing parallel programs is to achieve high performance. 
Parallel programs that perform a task quickly and with high accuracy are the most desirable. 
However, parallel programs can sometimes perform worse than serial programs for the same 
problem. This is due to poor scalability of parallel programs, resulting from the challenges 
discussed previously. Another important issue is the accuracy. Fast programs with inaccurate 
results make no sense. Sometimes low accuracy comes from incorrect communications 
between processes.  
 
Parallel programming can be done in one of the following models: Cluster parallelization 
(Message Passing Interface), Open Multi-Processing (OpenMP), or a mixture of both MPI 
and OpenMP.  
 
 
2.3.1 Message Passing Interface (MPI) 

Message Passing Interface (MPI)9 is a cluster-based parallel programming model. It is a 
library of functions (in C language) or subroutines (in Fortran) that a programmer inserts into 
source code to perform data communication between processes. MPI provides a portable 
code and allows efficient implementation across a range of computer architectures. Usually, 
MPI programs consist of multiple instances of a serial program that communicate by library 
calls. These calls may be roughly divided into four classes:  

1. Calls used to initialize, manage, and terminate communications between processes. 
These calls are responsible for starting communications, identifying the number of 
processes being used, creating subgroups of processes, and identifying which process 
is running a particular instance of a program. 

2. Calls used to communicate between pairs of processes. This class of calls is called 
point-to-point communications operations. It consists of different types of send and 
receive operations.  

3. Calls used to perform communications operations among groups of processes. This 
class of calls is known as the collective operations that provide synchronization or 
certain types of well-defined communications operations among groups of processes.  

4. Calls used to create arbitrary data types. This class of calls provides flexibility in 
dealing with complicated data structures. 

 
There are different MPI code implementation schemes: master-worker, client-server, and full 
workers schemes. In the master-worker scheme, the master process manages all tasks 
between workers. Since there is no inter-worker communication in this scheme, it gives 
reasonable execution time. A main disadvantage is that a lot of the workload is carried by the 
master process. The master-worker scheme is shown in Figure 5. 

   



 

 

 
Fig. 5. Master Workers Parallel Programming Scheme14. 

 
 

The client-server scheme is different from the master-worker scheme. In addition to the 
master process, this scheme assigns another process known as the server to handle tasks or 
generate data that will be used by all the workers in the group. The server process will 
communicate with all processes except the master. This means additional communication 
times between server and workers which can cause poor scalability in some applications.  
The client-server scheme is illustrated in Figure 6. 

 
 
 



 

 

 
Fig.6. Client-server scheme14. 

 
 
 

An example of using the full workers scheme is computing a numerical integral using the 
Monte Carlo method. In this scheme, the master administrates the ranges of random number 
to be generated for each worker, but leaves the actual generation of random numbers to the 
workers. Upon receiving a range, the workers generate these numbers and calculate the 
Monte Carlo sub-sums. This implies that they must generate and discard those random 
numbers prior to their range selection. This is a waste of computing resources. 

 
 
 
 

2.3.2 Multithread Programming  

Open Multi-Processing (OpenMP)9 is a multithread programming technique. OpenMP is an 
implementation of multithreading, a method of parallelization whereby the master "thread" (a 
series of instructions executed consecutively) "forks" a specified number of slave "threads" 
and a task is divided among them. The threads then run concurrently, with the runtime 
environment allocating threads to different processors. The core elements of OpenMP are the 
constructs for thread creation, workload distribution (work sharing), data-environment 
management, thread synchronization, user-level runtime routines and environment variables. 
Figure 7 illustrates the multithread programming concept. 
 
 
 



 

 

 
 
 
 
 
 

 
 

 Fig. 7.  Illustration of Multithreading10 

 
 
2.3.3 Mixed MPI and OpenMP programming 

To accomplish better performance, a mixture of MPI and OpenMP code can be implemented. 
In this mixture, each process in MPI forks the assigned independent tasks into multithreads to 
get better performance. The mixture programming model is illustrated in Figure 8.  
 

 
 

Fig. 8. Mixed MPI and OpenMP Scheme9 

 
 
 



 

 

 

3. LITERATURE REVIEW 

Parallel high-dimensional numerical integration is used in different science and engineering 
applications. The most used parallel algorithms for high-dimensional numerical integration 
are quasi-Monte Carlo and adaptive cubature rules2,11. The comparison between these two 
methods is based on their performance for high-dimensional applications. Comparison 
between performance of Quasi-Monte Carlo and adaptive Cubature rules depends on the 
dimension of integration and one the smoothness of the integrand.  
 
 The advantage of quasi-Monte Carlo over the adaptive cubature rules is that it is easy to 
implement and parallelize. It splits the random samples into block with each process taking 
care of one of them. The adaptive cubature algorithms apply cubature rules successively to 
smaller subregions of the original integration domain. It adapts to difficult areas in the 
integration domain by refining subregions with larger estimated errors. The algorithms are 
iterative. The loop can be terminated using a convergence criteria on the relative error or 
when the number of integrand evaluations exceeds an upper bound. Adaptive algorithms 
scale badly even for a moderate number of processes. To improve the scalability, all global 
communication has to be removed. Therefore master-worker does not work well for adaptive 
algorithms. Each process executes the sequential algorithm on a subset of subregions of the 
initial integration domain.  
 
 
 A list of adaptive algorithms for numerical integration was presented by Bull4. The adaptive 
algorithms were divided into two classes. They are single list algorithms and multiple list 
algorithms3. In single list algorithms, sequential globally adaptive algorithms are modified by 
introducing a subregion selection strategy that enables multiple subregions to be subdivided 
concurrently. The objective of the subregion selection strategy is to identify a sufficient 
number of subregions with larger error estimates to keep all processes usefully busy. These 
methods work best in one dimension. In multidimensional applications, these algorithms 
divide the region into different equal subregions in the most badly behaved direction, which 
has unfortunate consequences, such as longer execution time, and low accuracy. This due to 
that: parts of the region where the integrand is locally well behaved in the selected direction 
may be subdivided.  
 
Multiple list algorithms incorporate a load balancing strategy to obviate the difficulty of 
using an initial static subdivision of the region alone. These algorithms require 
synchronization between processes. This could cause a delay in the execution time. 
 
Our algorithm is quasi-Monte Carlo based. It uses Sobol’s quasi-sequence to generate 
random numbers. The reason behind choosing this algorithm is that it works better than other 
algorithms in high-dimensional applications. Another reason is that it uses Sobol’s sequence, 
a low-discrepancy sequence. It generates the random samples to uniformly cover the entire 
integration domain. It avoids the clustering effect caused by pseudo-random number 
sequences. 
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4. PROBLEM STATEMENT 

 
The observed intensity for a given scattering at a particular point (Q0,E0)  in the (Q,E)  space is 

given by 
 
 
 
 
 
 
Where   

 is the sample scattering function, and   is the resolution function of the 
spectrometer.  

 
The sample scattering function consists of three different components: background, incoherent, 

and the ladder components.  The background component is a constant.  The incoherent component is 
given by  

 

 

Where maxincoh a constant parameter, and sincoh is the standard deviation. 
 
The ladder component is given by  
 

                    

 
where maxint is a constant parameter, sigmaE is the standard deviation, w is the dispersion, 

fdperp is a dimer form factor, and ff is a function of magnetic form factor: 
 

 

 
 

 

 



 

 

 

 
j0, j2  are  eight elements arrays. 
 
 

 

Combining these terms,  can be written as 
 

 
 
 
The resolution function  is given by  
 

 
Where  
R0 is a constant and M is a symmetric matrix. 
 
 

The problem we are solving here is a challenging problem. We have a huge amount of data 
points at which to compute the above four dimensional integral. We have tera-scale data 
produced by the neutron scattering experiment. The points are acquired at approximately 100 
angles. For each angle, 1010 data points are acquired. Although the problem is tera-scale in 
terms of data, it needs extreme-scale computing to be solved. This is due to the number of 
floating point calculations per quadruple integral  at each data points, 1000 iteration to 
optimize the algorithm, and 10 scattering functions. In terms of computation, the problem 
performs 1018 FLOPS.  
 
The large computing scale that our problem has makes it impossible to solve serially in a 
reasonable amount of time. For this reason, we decide to parallelize the algorithm. 

 
 
 

4.1 OBJECTIVES  

The main objective of this research is to implement parallel algorithms to solve the neutron 
scattering problem discussed in the previous section. The implemented algorithms should 
satisfy: 

1. Correctness: should give the correct answer. 
2. Efficient: solve the problem in a reasonable amount of time. 
3. Scalable: given more computing resources, it will solve the problem faster. 
4. Easy: the parameters of integration are easy to supply and track. 
5. General: It works for any integrand and variable number of nodes.   

 
 
 



 

 

5. IMPLEMENATION DETAILS 

The algorithm was implemented in two different versions; serial and parallel. The serial 
version was implemented and tested at a variety of data points.  
 
5.1 SERIAL VERSION  

The serial version of the developed algorithm is used as the base for the parallel version. This 
version consists of sequential steps to accomplish the required tasks. The following pseudo 
code summarizes the steps used in this version 
 
Step 1: Generate the data point at which the four dimensional integral should be computed. 
Step 2: Generate the quasi-random samples needed by Monte Carlo method to compute the   
            integral. 
Step 3: For each data point,  

i. Compute the integral using the quasi-Monte Carlo method. 
ii. Compute the relative error between two successive iterations of the integral 

value. 
iii. If the relative error is satisfactory or the maximum iterations were reached, 

then stop and return the value of the integral at the given data point. 
iv. Else, increase the number of random samples. 
v. Go to i. 

       
 
The flow diagram in Figure 9, illustrates these steps. 
 
 
 



 

 

 
 
 

Fig. 9. Serial version flow diagram. 
 
 
 
5.2 PARALLEL VERSION 

The serial code works efficiently for a small number of points. However, the when number of 
points gets sufficiently large, parallelization of the serial code is necessary.  As discussed 
before, problem decomposition is a challenge in solving problems in parallel. In our case, it 
was determined that the most challenging issue was the large number of data points at which 
the integral needs to be computed. Nevertheless, the evaluation by the quasi- Monte Carlo 
method using a large number of random samples could be parallelized.  
 



 

 

Our algorithm uses the master-slave parallelization scheme. This scheme was preferred over 
other existing parallelization schemes due to ease of implementation and minimized inter-
worker communication. This, in turn, minimizes the execution time. The illustration of the 
master-slave scheme is shown in Figure 5.  Although this scheme is easy to implement, it 
suffers from the disadvantages of sequential slave creation and heavy communication 
overhead at the master process.  
 
Our parallel code implements the following pseudo code. 
 
Step 1: Master generates the data points. 
Step 2: Master generates the random samples. 
Step 3: Master decides the number of data points each slave should receive. 
Step 4:  Master sends random samples to slaves. 
Step 5: Master sends data points decided in step 3 to slaves. 
Step 6: Slaves receives random samples. 
Step 7: Slaves receives assigned data points. 
Step 8: Each slave computes the integral for all the assigned data points. 
Step 9: Each slave sends the integral values of the assigned data points to Master. 
Step 10: Master receives the computed integral values for all data points. 
Step 11: Master displays execution time and computed integral values. 
 
Figure 10, illustrates the parallel version of the developed algorithm. 
 



 

 

 
 
 

Fig. 10. Parallel version flow diagram. 
  
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
6. PERFORMANCE EVALUATION 

Different experiments have been conducted to evaluate the performance of the developed 
algorithms, specifically the speed and accuracy of the algorithm. In this section, we present 
some results obtained from these experiments. 
 
 
6.1 ACCURACY EVALUATION 

For this purpose, we conducted two experiments. The first experiment was conduct using 
Genz’s testing functions listed the Table 1. 
 

Table 1.  Genz’s testing functions9 

Function   Name  
  Oscillatory 
  

Product Peak 

  
Corner Peak 

 
 

Gaussian 

  Continuous 
 

 
Discontinuous 

 
 
 
The integral of each testing function was done analytically and the following true values 
were obtained. All the testing functions except the third one were calculated over an 
integration interval of [-π/2, π/2]. The third function was integrated over an interval of [0, 1]. 
 
 
 
 
 
 
 
 
 
 



 

 

Table 2.  True value of testing functions integral.  

Function Integral True Value 
 16 
 16.26189 
 0.00833333 
 8.867925 
 6.26748 
 13.2919 

 

 

Table 3.   Accuracy and execution time (in Seconds) results of testing functions integral.   

Mathematica Methods 
 NIntegrate QM Trapezoidal GaussKronrod QM-Serial 
Function Acc. time 

(Sec) 
Acc. Time 

(Sec) 
Acc. time 

(Sec) 
Acc. time 

(Sec) 
Acc. Time 

(Sec) 

 0 0.25 0.00006 0.28 0.05055 0.05 0 0.11 0.00019 0.11 

 0.00072 0.28 0.00049 0.09 0.00219 0.22 0.00072 2.62 0.00001 0.10 

 0 0.70 0.00131 0.218 0.02204 0.11 0 0.50 0.00034 0.11 

 .00032 0.33 0.0012 0.15 0.00363 0.03 0.00032 1.06 0.0006 0.13 

 0.00506 0.09 0.0048 0.14 0.01315 0.12 0.00506 0.12 0.0058 0.10 

 0 0.20 0.0002 0.20 0.03240 0.11 0 0.11 0.00157 0.09 

 
 
 
Table 3 shows the accuracy and execution time obtained from our serial version code, 
different Mathematica methods such as, Nintegrate, QuasiMonteCarlo, Trapezoidal, and 
GaussKronrodRule.  The accuracy in Table 3 was calculated based on the following formula: 
 
 
 

 

 
 
The exact value was taken from Table 2.  
 
For most of the testing functions, there is a noticeable tradeoff between accuracy and 
execution time. Our code has an acceptable accuracy and reasonable execution time. For 
functions, , , and  , the NIntegrate  , and GaussKronrodRule  Mathematica methods 
have better accuracy than our code. On the other hand, their execution times are much longer 
than our serial version code execution times.  



 

 

 To further test the accuracy of our algorithm, an experiment was conducted to compute the 
integral which represents the intensity at the given point.  In this experiment, Qy and Qz were 
set to -1. The intensity was computed for this setting and the obtained results were plotted as 
a function of Qx and E. The results were compared with simulated data point intensity values 
obtained from a supplied code, as shown in Figure 11.  Results obtained from integration re 
shown in the Figure 12 below. The obtained results are consistent with the results obtained 
from the supplied intensity simulation code.  
 

 
 

Fig. 11.  Intensity Simulated/ Measured at  (Qx, E) 
 



 

 

 
 

Fig. 12.  Intensity predicted by Refined Model at (Qx, E) 
 
 
 
Another experiment was conducted to evaluate the accuracy of our algorithms compared to 
Mathematica methods. For this experiment, we evaluated the integral of our problem of 
interest at the point (Q0, E0)=(-1,-1,-1,0). The value of the integral at this point is known. 
The accuracy and the execution time for different Mathematica methods and our developed 
algorithm are shown in the Table 4. 
 
 
 
Table 4.  Accuracy and execution time (in seconds) obtained from integrating R*S at (-1,  

-1,-  1,  0) 

Mathematica Integration Methods Accuracy Time 
(Seconds) 

QuasiMonteCarlo	
   0.00812738	
   0.484	
  
Monte	
  Carlo	
   0.0071752	
   0.312	
  
AdaptiveQuasiMonteCarlo	
   0.232069	
   0.53	
  
MultiDimensionalRule	
   1.14901E-­‐05	
   27.8	
  
GlobalAdaptive	
   0.000014901	
   28.471	
  
Trapezoidal	
   0.299859	
   0.078	
  
Oscillatory	
   1.15877E-­‐05	
   27.612	
  
Serial	
  Quasi	
  Monte	
  Carlo	
   0.003696	
   0.813	
  



 

 

 
6.2 SCALABILITY EVALUATION 

 
In addition to the experiments for accuracy and speed of the serial version of the code, we 
conducted experiments to test the scalability of the parallel code. For this purpose, we 
conducted two different experiments. The first experiment was conducted to study the 
scalability of the code at a number of data points. We used 160 processes, and changed the 
number of data points to cover the range from 5x104 to 108  data points, and the execution 
time was measured. The results obtained from this experiment are shown in Figure 13. It can 
be seen that increasing the number of data points causes a linear increase in execution time. 
 
 
 

 
Fig.13. Execution time Vs number of data points. 

 
 
 
The second experiment was conducted to test the scalability of the parallel code with the 
number of processes. Using 3x105 data points, we changed the number of processes to cover 
the available range (8 to 160 processes), and we measured the execution time. The results 
obtained from this experiment are shown in Figure 14.  It can be seen from the figure that the 
execution time fits to a power function. A linear execution time was expected. The total 
execution time includes communication time, time to generate Sobol’s sequence, and the 



 

 

computation time. The computation time is expected to be linear, but the communication 
time and Sobol’s sequence generation time are much larger than the computation time which 
may cause the total execution time to behave like power function. Figure 14 below shows 
that between 8 processes and 32 processes, the execution time is linear. For number of 
processes lager than 32, the execution time starts to be steady.  
 
 
 
 
 

 
 

Fig.14. Execution time Vs number of processes for 300, 000 data points. 
 
 
 
The parallel code was run on Oak Ridge Institutional Cluster.  The specifications of OIC are 
listed in Appendix B. 
 
 
 
 
 
 



 

 

7. CONCLUSIONS AND FUTURE WORK 

Serial and parallel algorithms were implemented to compute the four dimensional integral for 
the neutron scattering application. The implemented algorithms were tested for correctness 
by using Genz’s functions and Mathematica’s integration methods. The implemented parallel 
algorithm was tested for scalability. The execution time versus the size of data points was 
measured. Results show that the algorithm behaves linearly as the size of the data is 
increased and as a power function as the number of processes is increased.   
 
The implemented algorithm with up to 160 processes could process 108 data points 
efficiently. More work is needed to extend the capability of the implemented algorithm to 
process all 1012  data points generated by the neutron scattering experiment.  
 
Our implemented algorithm uses the single level MPI technique. That is, the master is 
responsible for all task management. One idea to deal with huge data size is to develop a 
mixture of MPI and OpenMP algorithms. That way, each process forks out the parallelized 
tasks into multithreads which is expected to achieve faster execution. Another way to 
approach this problem is to implement multilevel MPI algorithms. In multilevel, the master 
will divide the load and send it to different processes where each process behaves as a master 
for another group of processes. This could make it easier to process more data points and 
could results in a faster implementation. In both suggested cases, correctness and scalability 
are important to test.  
 
As discussed previously, problem decomposition is a big challenge in writing parallel 
programs. In our algorithm, we used data point decomposition. The problem has a potential 
for more nested decomposition. As Monte Carlo methods need random samples to compute 
the integral; the integral at each point could be computed by dividing the random numbers 
between different processes to compute the sub-sums. This method could make the per data 
point computation time smaller. Significant attention should be paid to scalability and 
correctness. 
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APPENDIX A .   INTEGRATION   VARIABLES TRANSFORMATION 

 
In order to solve the integral  
 
 
 
 
 
A variables transformation is necessary.   
Recall  
Let  

 

 

 

 

 
 
 
Substitute these values in the integral  
 
 
 
 
 
 
 
 
The implemented Quasi Monte Carlo uses the Sobol’s sequences to generate random samples. The 
generated samples are numbers in the interval [0,1]. To compute the integral, we need to transform 
variables of integration. 
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APPENDIX B.   ORNL INSTITUTIONAL CLUSTER (OIC) 

 
 
 
 

 
 

Fig. B.1 . ORNL Institutional Cluster (OIC)13 
 
Our code was tested on ORNL Institutional Cluster (OIC) shown in Figure B.1.  OIC has 
different types of nodes.    The NSSD “Block” that we used to run our code is a block of 22 
nodes, with 3.11 peak TFLOP, and 16GB memory per node, but that is not the entire OIC. 
More information about OIC is available at http://oic.ornl.gov. 
 
 

 
 

 
 
 


