
ORNL/TM-2010/30

Scalable Parallel Algorithms for High
Dimensional Numerical Integration

August 2010

Prepared by
Yahya M. Masalmah , Ph.D.
Yu (Cathy) Jiao, Ph.D.

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. Department of
Energy (DOE) Information Bridge.

 Web site http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source.

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161
 Telephone 703-605-6000 (1-800-553-6847)
 TDD 703-487-4639
 Fax 703-605-6900
 E-mail info@ntis.gov
 Web site http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
(ETDE) representatives, and International Nuclear Information System (INIS) representatives from
the following source.

 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831
 Telephone 865-576-8401
 Fax 865-576-5728
 E-mail reports@osti.gov
 Web site http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

ORNL/TM-2010/30

Computational Sciences & Engineering Division

SCALABLE PARALLEL ALGORITHMS FOR HIGH
DIMENSIONAL NUMERICAL INTEGRATION

Yahya M. Masalmah, Ph.D.*

Yu (Cathy) Jiao, Ph.D.†

*Universidad del Turabo Electrical and Computer Engineering Department
†ORNL Computational Sciences & Engineering Division

Date Published: August 2010

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831-6283
managed by

UT-BATTELLE, LLC
for the

U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

iii

CONTENTS

Page

LIST OF FIGURES .. v	

LIST OF TABLES..vii	

ABSTRACT ... 9	

1.	
 INTRODUCTION ... 9	

2.	
 Background .. 11	

2.1	
 NEUTRON SCATTERING ... 11	

2.2	
 NUMERICAL INTEGRATION METHODS .. 13	

2.3	
 PARALLEL PROGRAMMING CHALLENGES ... 14	

2.3.1	
 Message Passing Interface (MPI) .. 15	

2.3.2	
 Multithread Programming ... 17	

2.3.3	
 Mixed MPI and OpenMP programming.. 18	

3.	
 literature review ... 19	

4.	
 PROBLEM Statement.. 20	

4.1	
 OBJECTIVES... 21	

5.	
 Implemenation Details ... 22	

5.1	
 SERIAL VERSION .. 22	

5.2	
 PARALLEL VERSION.. 23	

6.	
 performance evaluation.. 26	

6.1	
 ACCURACY EVALUATION ... 26	

6.2	
 SCALABILITY EVALUATION ... 30	

7.	
 Conclusions and future work ... 32	

8.	
 References.. 33	

APPENDIX A . Integration Variables Transformation.. 34	

APPENDIX B. ORNL Institutional cluster (OIC) ... 36	

v

LIST OF FIGURES

Figure Page

Fig. 1. Jaguar Supercomputer at Oak Ridge National Laboratory. ... 10	

Fig.2. Elastic Neutron Scattering12 ... 12	

Fig. 3. Inelastic Neutron Scattering12.. 12	

Fig.4. points Sequences examples .. 14	

Fig. 5. Master Workers Parallel Programming Scheme14... 16	

Fig.6. Client-server scheme14.. 17	

Fig. 7. Illustration of Multithreading10... 18	

Fig. 8. Mixed MPI and OpenMP Scheme9 ... 18	

Fig. 9. Serial version flow diagram. ... 23	

Fig. 10. Parallel version flow diagram.. 25	

Fig. 11. Intensity Simulated/ Measured at (Qx, E).. 28	

Fig. 12. Intensity predicted by Refined Model at (Qx, E).. 29	

Fig.13. Execution time Vs number of data points. ... 30	

Fig.14. Execution time Vs number of processes for 300, 000 data points. .. 31	

Fig. B.1 . ORNL Institutional Cluster (OIC)13 ... 36	

vii

LIST OF TABLES

Table Page

Table 1. Genz’s testing functions9 .. 26	

Table 2. True value of testing functions integral. ... 27	

Table 3. Accuracy and execution time (in Seconds) results of testing functions integral. 27	

Table 4. Accuracy and execution time (in seconds) obtained from integrating R*S at (-1, -1,- 1, 0).. 29	

ABSTRACT

We implemented a scalable parallel quasi-Monte Carlo numerical high-dimensional
integration for tera-scale data points. The implemented algorithm uses the Sobol’s quasi-
sequences to generate random samples. Sobol’s sequence was used to avoid clustering effects
in the generated random samples and to produce low-discrepancy random samples which
cover the entire integration domain. The performance of the algorithm was tested. Obtained
results prove the scalability and accuracy of the implemented algorithms. The implemented
algorithm could be used in different applications where a huge data volume is generated and
numerical integration is required. We suggest using the hyprid MPI and OpenMP
programming model to improve the performance of the algorithms. If the mixed model is
used, attention should be paid to the scalability and accuracy.

1. INTRODUCTION

Computational Science contributes significantly to most disciplines. Initially, science was
primarily empirical. More recently, each discipline has developed a new theoretical
component. Theoretical models play an important role in motivating experiments and
generalizing our understanding. In the last 50 years, a computational branch has grown in
different disciplines. It has grown out of our inability to find closed form solutions for
complex mathematical models. Computers can simulate these complex models

Information management makes scientists and engineers face mountains of data that stem
from different areas such as: the flood of data from new scientific instruments driven by
Moore’s Law – doubling their data output every year or so, the flood of data from
simulations, the ability to economically store petabytes of data online, and the internet and
computational grid that makes all these archives accessible to anyone anywhere, allowing the
replication, creation, and recreation of more data2.

The volume of data produced by different science and engineering applications is enormous.
Acquisition, organization, query, and visualization tasks scale almost linearly with data
volumes. By using parallelism, these problems can be solved within fixed times (minutes or
hours). Some tasks do not scale linearly with the data volumes which makes challenging to
analyze these data. If the data increases a thousand-fold, the work and time to process these
data can grow by a significant factor. Many algorithms scale even worse with data volumes.
Algorithms with poor scalability are infeasible for terabyte-scale or higher scale datasets.

Most current applications in science and engineering produce huge amounts of data. Data
size ranges from regular scale up to exascale. Small data sets can be analyzed using serial
computation, simple computing resources, and regular hardware architectures. As the data
size gets larger and larger, the demand for supercomputing resources increases

proportionally. There are serious exascale problems that just cannot be solved in any
reasonable amount of time with the available computers. The next generation of
supercomputers could be used to solve big programming problems and allow for the
development of a new generation of scientific and engineering applications.

Different supercomputers are now available around the world. The world's fastest
supercomputer today, a Cray XT5 system at Oak Ridge National Laboratory that's known as
Jaguar and shown in Figure 1, has a peak performance of 2.3 petaflops. A petaflop is a
quadrillion, or 1,000 trillion, sustained floating-point operations per second.

Fig. 1. Jaguar Supercomputer at Oak Ridge National Laboratory.1

In this research, different multidimensional integration algorithms were explored. The
explored algorithms were tested for parallelization suitability. The selected algorithms will be
used to compute a four dimensional integral for up to 1012 data points of neutron scattering
application

 The range of Monte Carlo applications is enormous, from the simulation of galactic
formation to quantum chromodynamics to the solution of systems of linear equations. Our
implemented algorithm could be used for all applications similar to our neutron scattering
problem.

2. BACKGROUND

2.1 NEUTRON SCATTERING

X-ray and neutron scattering are very useful techniques in the study of the properties of
solids. x-rays are limited in applications due to the high energy of the sources on which
typical x-rays are generated. The energy of sources is on the order of several thousand
electron volts. This energy is much greater than the average excitation of materials found at
room temperature. This makes x-rays particularly well-suited for the study of static
properties of systems. Neutrons, on the other hand, have thermal energies on the order of
milli-electron volts; the energy range of lattice and spin excitations in solids. Therefore,
neutron scattering is a very powerful probe of both statics and dynamics in solids. The
neutron also has a known spin, which interacts with other magnetic moments within a
material. Thus, neutron scattering can be used as a technique to probe magnetic structures
and excitations as well as lattice structure and excitations.

Neutron scattering can be elastic as shown in Figure 2 or inelastic as shown in Figure 3.
Inelastic scattering is an experimental technique commonly used in condensed matter
research to study atomic and molecular motion as well as magnetic and crystal field
excitations. It distinguishes itself from elastic neutron scattering techniques by resolving the
change in kinetic energy that occurs when the collision between neutrons and the sample is
an inelastic one. Results are generally communicated as the dynamic structure factor (also
called inelastic scattering law) S(q,ω), or as the dynamic susceptibility χ(q,ω) where the
scattering vector q is the difference between incoming and outgoing wave vector, and is
the energy change experienced by the sample (negative that of the scattered neutron). When
results are plotted as a function of ω, they can often be interpreted in the same way as spectra
obtained by conventional spectroscopic techniques; that is, inelastic neutron scattering can be
seen as a special spectroscopy12.

Fig.2. Elastic Neutron Scattering12

Fig. 3. Inelastic Neutron Scattering12

2.2 NUMERICAL INTEGRATION METHODS

 Numerical computation of a definite integral of a function of several variables is one of the
basic problems in numerical analysis. The problem is considered hard due to the curse of
dimensionality, i.e. the computing cost is growing exponentially with the dimension of the
problem. The numerical solution of integration problems sometimes requires extensive
computation. Therefore, substantial effort has been invested in finding ways to exploit the
power of advanced computer architectures like vector or parallel computers to increase the
efficiency of algorithms.

 A review of existing algorithms for numerical integration of multivariate functions was
presented by Thomas Gerstner and Michael Griebel6. Some of the presented integration
algorithms use sparse grids to estimate the integrations. Some of the sparse grid methods
examined were the Trapezoidal rule, Clenshaw-Curtis formulas, Gauss, and Gauss-Patterson
formulas are examples of sparse grid methods examined. These formulas are examples of
nested univariate quadrature formulas. Nested formulas perform multidimensional
integration by recursively calling one dimensional integration formulas.

Monte Carlo integration is one of the most widely used methods in multidimensional
integration. It is also considered among the most accurate methods in different applications1.
The Monte Carlo method interprets the integrand function as a random variable, and
estimates the multidimensional integration by the statistical average over independent,
identically distributed samples . The samples are generated using pseudo-random
sequences. The integral can be written as

The Monte Carlo method converges7 at the rate of . It is superior to the Newton-
Cotes formula for high dimensional problems. One key factor that slows the convergence of
Monte Carlo method is using the pseudo-random sequences to generate the random samples.
The implementation of pseudo-random sequences produced a clustering effect which slows
the convergence of the Monte Carlo method. Many attempts were made to improve the
convergence of the Monte Carlo method. The quasi-Monte Carlo method is an improved
version of the Monte Carlo method. It uses deterministic sequences, called quasi-random or
low discrepancy, sequences instead of pseudo-random sequences. Quasi-random sequences
have the advantage of uniformity of generated samples which can be quantified by its
discrepancy, where sequences with low discrepancy are closer to uniformity. 6. Examples of
generated sequences are shown in Figure 4.

Fig.4. points Sequences examples

2.3 PARALLEL PROGRAMMING CHALLENGES

Parallel programming is intended to achieve high performance computing. In parallel
programming, there is no general framework to implement parallel programs for different
software applications. Programmers face four immediate challenges when writing parallel
programs: scalability, correctness, maintainability, and problem decomposition. There are
two types of problem decomposition: functional decomposition, and data or domain
decomposition.

Functional decomposition is used to introduce concurrency in the problems that can be
solved by different independent tasks. All these tasks can run concurrently. On the other
hand, data decomposition works best on an application with large data structure. A task is
decomposed by partitioning the data on which computations are performed. The tasks
performed on the data partitions are usually similar.

Parallel overhead is another parallel programming challenge. Parallel overhead refers to the
amount of time required to coordinate parallel tasks as opposed to doing useful work. Parallel
overhead typically includes the time to start and terminate a task, the time to pass messages
between tasks, synchronization time, and other extra computation time.

Synchronization is necessary in multithreading programs to prevent race conditions. It limits
parallel efficiency even more than overhead in that it serializes parts of the program7. Load
balancing refers to the practice of distributing work among tasks so that all processes are kept

busy all of the time. It can be considered a minimization of process idle time. Load balancing
is important to parallel programs for performance reasons. For example, if all tasks are
subject to a barrier synchronization point, the slowest task will determine the overall
performance. For this reason, load balancing is considered one of the reasons behind poor
scalability.

As discussed before, the goal of writing parallel programs is to achieve high performance.
Parallel programs that perform a task quickly and with high accuracy are the most desirable.
However, parallel programs can sometimes perform worse than serial programs for the same
problem. This is due to poor scalability of parallel programs, resulting from the challenges
discussed previously. Another important issue is the accuracy. Fast programs with inaccurate
results make no sense. Sometimes low accuracy comes from incorrect communications
between processes.

Parallel programming can be done in one of the following models: Cluster parallelization
(Message Passing Interface), Open Multi-Processing (OpenMP), or a mixture of both MPI
and OpenMP.

2.3.1 Message Passing Interface (MPI)

Message Passing Interface (MPI)9 is a cluster-based parallel programming model. It is a
library of functions (in C language) or subroutines (in Fortran) that a programmer inserts into
source code to perform data communication between processes. MPI provides a portable
code and allows efficient implementation across a range of computer architectures. Usually,
MPI programs consist of multiple instances of a serial program that communicate by library
calls. These calls may be roughly divided into four classes:

1. Calls used to initialize, manage, and terminate communications between processes.
These calls are responsible for starting communications, identifying the number of
processes being used, creating subgroups of processes, and identifying which process
is running a particular instance of a program.

2. Calls used to communicate between pairs of processes. This class of calls is called
point-to-point communications operations. It consists of different types of send and
receive operations.

3. Calls used to perform communications operations among groups of processes. This
class of calls is known as the collective operations that provide synchronization or
certain types of well-defined communications operations among groups of processes.

4. Calls used to create arbitrary data types. This class of calls provides flexibility in
dealing with complicated data structures.

There are different MPI code implementation schemes: master-worker, client-server, and full
workers schemes. In the master-worker scheme, the master process manages all tasks
between workers. Since there is no inter-worker communication in this scheme, it gives
reasonable execution time. A main disadvantage is that a lot of the workload is carried by the
master process. The master-worker scheme is shown in Figure 5.

Fig. 5. Master Workers Parallel Programming Scheme14.

The client-server scheme is different from the master-worker scheme. In addition to the
master process, this scheme assigns another process known as the server to handle tasks or
generate data that will be used by all the workers in the group. The server process will
communicate with all processes except the master. This means additional communication
times between server and workers which can cause poor scalability in some applications.
The client-server scheme is illustrated in Figure 6.

Fig.6. Client-server scheme14.

An example of using the full workers scheme is computing a numerical integral using the
Monte Carlo method. In this scheme, the master administrates the ranges of random number
to be generated for each worker, but leaves the actual generation of random numbers to the
workers. Upon receiving a range, the workers generate these numbers and calculate the
Monte Carlo sub-sums. This implies that they must generate and discard those random
numbers prior to their range selection. This is a waste of computing resources.

2.3.2 Multithread Programming

Open Multi-Processing (OpenMP)9 is a multithread programming technique. OpenMP is an
implementation of multithreading, a method of parallelization whereby the master "thread" (a
series of instructions executed consecutively) "forks" a specified number of slave "threads"
and a task is divided among them. The threads then run concurrently, with the runtime
environment allocating threads to different processors. The core elements of OpenMP are the
constructs for thread creation, workload distribution (work sharing), data-environment
management, thread synchronization, user-level runtime routines and environment variables.
Figure 7 illustrates the multithread programming concept.

 Fig. 7. Illustration of Multithreading10

2.3.3 Mixed MPI and OpenMP programming

To accomplish better performance, a mixture of MPI and OpenMP code can be implemented.
In this mixture, each process in MPI forks the assigned independent tasks into multithreads to
get better performance. The mixture programming model is illustrated in Figure 8.

Fig. 8. Mixed MPI and OpenMP Scheme9

3. LITERATURE REVIEW

Parallel high-dimensional numerical integration is used in different science and engineering
applications. The most used parallel algorithms for high-dimensional numerical integration
are quasi-Monte Carlo and adaptive cubature rules2,11. The comparison between these two
methods is based on their performance for high-dimensional applications. Comparison
between performance of Quasi-Monte Carlo and adaptive Cubature rules depends on the
dimension of integration and one the smoothness of the integrand.

 The advantage of quasi-Monte Carlo over the adaptive cubature rules is that it is easy to
implement and parallelize. It splits the random samples into block with each process taking
care of one of them. The adaptive cubature algorithms apply cubature rules successively to
smaller subregions of the original integration domain. It adapts to difficult areas in the
integration domain by refining subregions with larger estimated errors. The algorithms are
iterative. The loop can be terminated using a convergence criteria on the relative error or
when the number of integrand evaluations exceeds an upper bound. Adaptive algorithms
scale badly even for a moderate number of processes. To improve the scalability, all global
communication has to be removed. Therefore master-worker does not work well for adaptive
algorithms. Each process executes the sequential algorithm on a subset of subregions of the
initial integration domain.

 A list of adaptive algorithms for numerical integration was presented by Bull4. The adaptive
algorithms were divided into two classes. They are single list algorithms and multiple list
algorithms3. In single list algorithms, sequential globally adaptive algorithms are modified by
introducing a subregion selection strategy that enables multiple subregions to be subdivided
concurrently. The objective of the subregion selection strategy is to identify a sufficient
number of subregions with larger error estimates to keep all processes usefully busy. These
methods work best in one dimension. In multidimensional applications, these algorithms
divide the region into different equal subregions in the most badly behaved direction, which
has unfortunate consequences, such as longer execution time, and low accuracy. This due to
that: parts of the region where the integrand is locally well behaved in the selected direction
may be subdivided.

Multiple list algorithms incorporate a load balancing strategy to obviate the difficulty of
using an initial static subdivision of the region alone. These algorithms require
synchronization between processes. This could cause a delay in the execution time.

Our algorithm is quasi-Monte Carlo based. It uses Sobol’s quasi-sequence to generate
random numbers. The reason behind choosing this algorithm is that it works better than other
algorithms in high-dimensional applications. Another reason is that it uses Sobol’s sequence,
a low-discrepancy sequence. It generates the random samples to uniformly cover the entire
integration domain. It avoids the clustering effect caused by pseudo-random number
sequences.

.

4. PROBLEM STATEMENT

The observed intensity for a given scattering at a particular point (Q0,E0) in the (Q,E) space is

given by

Where

 is the sample scattering function, and is the resolution function of the
spectrometer.

The sample scattering function consists of three different components: background, incoherent,

and the ladder components. The background component is a constant. The incoherent component is
given by

Where maxincoh a constant parameter, and sincoh is the standard deviation.

The ladder component is given by

where maxint is a constant parameter, sigmaE is the standard deviation, w is the dispersion,

fdperp is a dimer form factor, and ff is a function of magnetic form factor:

j0, j2 are eight elements arrays.

Combining these terms, can be written as

The resolution function is given by

Where
R0 is a constant and M is a symmetric matrix.

The problem we are solving here is a challenging problem. We have a huge amount of data
points at which to compute the above four dimensional integral. We have tera-scale data
produced by the neutron scattering experiment. The points are acquired at approximately 100
angles. For each angle, 1010 data points are acquired. Although the problem is tera-scale in
terms of data, it needs extreme-scale computing to be solved. This is due to the number of
floating point calculations per quadruple integral at each data points, 1000 iteration to
optimize the algorithm, and 10 scattering functions. In terms of computation, the problem
performs 1018 FLOPS.

The large computing scale that our problem has makes it impossible to solve serially in a
reasonable amount of time. For this reason, we decide to parallelize the algorithm.

4.1 OBJECTIVES

The main objective of this research is to implement parallel algorithms to solve the neutron
scattering problem discussed in the previous section. The implemented algorithms should
satisfy:

1. Correctness: should give the correct answer.
2. Efficient: solve the problem in a reasonable amount of time.
3. Scalable: given more computing resources, it will solve the problem faster.
4. Easy: the parameters of integration are easy to supply and track.
5. General: It works for any integrand and variable number of nodes.

5. IMPLEMENATION DETAILS

The algorithm was implemented in two different versions; serial and parallel. The serial
version was implemented and tested at a variety of data points.

5.1 SERIAL VERSION

The serial version of the developed algorithm is used as the base for the parallel version. This
version consists of sequential steps to accomplish the required tasks. The following pseudo
code summarizes the steps used in this version

Step 1: Generate the data point at which the four dimensional integral should be computed.
Step 2: Generate the quasi-random samples needed by Monte Carlo method to compute the
 integral.
Step 3: For each data point,

i. Compute the integral using the quasi-Monte Carlo method.
ii. Compute the relative error between two successive iterations of the integral

value.
iii. If the relative error is satisfactory or the maximum iterations were reached,

then stop and return the value of the integral at the given data point.
iv. Else, increase the number of random samples.
v. Go to i.

The flow diagram in Figure 9, illustrates these steps.

Fig. 9. Serial version flow diagram.

5.2 PARALLEL VERSION

The serial code works efficiently for a small number of points. However, the when number of
points gets sufficiently large, parallelization of the serial code is necessary. As discussed
before, problem decomposition is a challenge in solving problems in parallel. In our case, it
was determined that the most challenging issue was the large number of data points at which
the integral needs to be computed. Nevertheless, the evaluation by the quasi- Monte Carlo
method using a large number of random samples could be parallelized.

Our algorithm uses the master-slave parallelization scheme. This scheme was preferred over
other existing parallelization schemes due to ease of implementation and minimized inter-
worker communication. This, in turn, minimizes the execution time. The illustration of the
master-slave scheme is shown in Figure 5. Although this scheme is easy to implement, it
suffers from the disadvantages of sequential slave creation and heavy communication
overhead at the master process.

Our parallel code implements the following pseudo code.

Step 1: Master generates the data points.
Step 2: Master generates the random samples.
Step 3: Master decides the number of data points each slave should receive.
Step 4: Master sends random samples to slaves.
Step 5: Master sends data points decided in step 3 to slaves.
Step 6: Slaves receives random samples.
Step 7: Slaves receives assigned data points.
Step 8: Each slave computes the integral for all the assigned data points.
Step 9: Each slave sends the integral values of the assigned data points to Master.
Step 10: Master receives the computed integral values for all data points.
Step 11: Master displays execution time and computed integral values.

Figure 10, illustrates the parallel version of the developed algorithm.

Fig. 10. Parallel version flow diagram.

6. PERFORMANCE EVALUATION

Different experiments have been conducted to evaluate the performance of the developed
algorithms, specifically the speed and accuracy of the algorithm. In this section, we present
some results obtained from these experiments.

6.1 ACCURACY EVALUATION

For this purpose, we conducted two experiments. The first experiment was conduct using
Genz’s testing functions listed the Table 1.

Table 1. Genz’s testing functions9

Function Name
 Oscillatory

Product Peak

Corner Peak

Gaussian

 Continuous

Discontinuous

The integral of each testing function was done analytically and the following true values
were obtained. All the testing functions except the third one were calculated over an
integration interval of [-π/2, π/2]. The third function was integrated over an interval of [0, 1].

Table 2. True value of testing functions integral.

Function Integral True Value
 16
 16.26189
 0.00833333
 8.867925
 6.26748
 13.2919

Table 3. Accuracy and execution time (in Seconds) results of testing functions integral.

Mathematica Methods
 NIntegrate QM Trapezoidal GaussKronrod QM-Serial
Function Acc. time

(Sec)
Acc. Time

(Sec)
Acc. time

(Sec)
Acc. time

(Sec)
Acc. Time

(Sec)

 0 0.25 0.00006 0.28 0.05055 0.05 0 0.11 0.00019 0.11

 0.00072 0.28 0.00049 0.09 0.00219 0.22 0.00072 2.62 0.00001 0.10

 0 0.70 0.00131 0.218 0.02204 0.11 0 0.50 0.00034 0.11

 .00032 0.33 0.0012 0.15 0.00363 0.03 0.00032 1.06 0.0006 0.13

 0.00506 0.09 0.0048 0.14 0.01315 0.12 0.00506 0.12 0.0058 0.10

 0 0.20 0.0002 0.20 0.03240 0.11 0 0.11 0.00157 0.09

Table 3 shows the accuracy and execution time obtained from our serial version code,
different Mathematica methods such as, Nintegrate, QuasiMonteCarlo, Trapezoidal, and
GaussKronrodRule. The accuracy in Table 3 was calculated based on the following formula:

The exact value was taken from Table 2.

For most of the testing functions, there is a noticeable tradeoff between accuracy and
execution time. Our code has an acceptable accuracy and reasonable execution time. For
functions, , , and , the NIntegrate , and GaussKronrodRule Mathematica methods
have better accuracy than our code. On the other hand, their execution times are much longer
than our serial version code execution times.

 To further test the accuracy of our algorithm, an experiment was conducted to compute the
integral which represents the intensity at the given point. In this experiment, Qy and Qz were
set to -1. The intensity was computed for this setting and the obtained results were plotted as
a function of Qx and E. The results were compared with simulated data point intensity values
obtained from a supplied code, as shown in Figure 11. Results obtained from integration re
shown in the Figure 12 below. The obtained results are consistent with the results obtained
from the supplied intensity simulation code.

Fig. 11. Intensity Simulated/ Measured at (Qx, E)

Fig. 12. Intensity predicted by Refined Model at (Qx, E)

Another experiment was conducted to evaluate the accuracy of our algorithms compared to
Mathematica methods. For this experiment, we evaluated the integral of our problem of
interest at the point (Q0, E0)=(-1,-1,-1,0). The value of the integral at this point is known.
The accuracy and the execution time for different Mathematica methods and our developed
algorithm are shown in the Table 4.

Table 4. Accuracy and execution time (in seconds) obtained from integrating R*S at (-1,

-1,- 1, 0)

Mathematica Integration Methods Accuracy Time
(Seconds)

QuasiMonteCarlo	
 0.00812738	
 0.484	

Monte	
 Carlo	
 0.0071752	
 0.312	

AdaptiveQuasiMonteCarlo	
 0.232069	
 0.53	

MultiDimensionalRule	
 1.14901E-­‐05	
 27.8	

GlobalAdaptive	
 0.000014901	
 28.471	

Trapezoidal	
 0.299859	
 0.078	

Oscillatory	
 1.15877E-­‐05	
 27.612	

Serial	
 Quasi	
 Monte	
 Carlo	
 0.003696	
 0.813	

6.2 SCALABILITY EVALUATION

In addition to the experiments for accuracy and speed of the serial version of the code, we
conducted experiments to test the scalability of the parallel code. For this purpose, we
conducted two different experiments. The first experiment was conducted to study the
scalability of the code at a number of data points. We used 160 processes, and changed the
number of data points to cover the range from 5x104 to 108 data points, and the execution
time was measured. The results obtained from this experiment are shown in Figure 13. It can
be seen that increasing the number of data points causes a linear increase in execution time.

Fig.13. Execution time Vs number of data points.

The second experiment was conducted to test the scalability of the parallel code with the
number of processes. Using 3x105 data points, we changed the number of processes to cover
the available range (8 to 160 processes), and we measured the execution time. The results
obtained from this experiment are shown in Figure 14. It can be seen from the figure that the
execution time fits to a power function. A linear execution time was expected. The total
execution time includes communication time, time to generate Sobol’s sequence, and the

computation time. The computation time is expected to be linear, but the communication
time and Sobol’s sequence generation time are much larger than the computation time which
may cause the total execution time to behave like power function. Figure 14 below shows
that between 8 processes and 32 processes, the execution time is linear. For number of
processes lager than 32, the execution time starts to be steady.

Fig.14. Execution time Vs number of processes for 300, 000 data points.

The parallel code was run on Oak Ridge Institutional Cluster. The specifications of OIC are
listed in Appendix B.

7. CONCLUSIONS AND FUTURE WORK

Serial and parallel algorithms were implemented to compute the four dimensional integral for
the neutron scattering application. The implemented algorithms were tested for correctness
by using Genz’s functions and Mathematica’s integration methods. The implemented parallel
algorithm was tested for scalability. The execution time versus the size of data points was
measured. Results show that the algorithm behaves linearly as the size of the data is
increased and as a power function as the number of processes is increased.

The implemented algorithm with up to 160 processes could process 108 data points
efficiently. More work is needed to extend the capability of the implemented algorithm to
process all 1012 data points generated by the neutron scattering experiment.

Our implemented algorithm uses the single level MPI technique. That is, the master is
responsible for all task management. One idea to deal with huge data size is to develop a
mixture of MPI and OpenMP algorithms. That way, each process forks out the parallelized
tasks into multithreads which is expected to achieve faster execution. Another way to
approach this problem is to implement multilevel MPI algorithms. In multilevel, the master
will divide the load and send it to different processes where each process behaves as a master
for another group of processes. This could make it easier to process more data points and
could results in a faster implementation. In both suggested cases, correctness and scalability
are important to test.

As discussed previously, problem decomposition is a big challenge in writing parallel
programs. In our algorithm, we used data point decomposition. The problem has a potential
for more nested decomposition. As Monte Carlo methods need random samples to compute
the integral; the integral at each point could be computed by dividing the random numbers
between different processes to compute the sub-sums. This method could make the per data
point computation time smaller. Significant attention should be paid to scalability and
correctness.

8. REFERENCES

1. Amos G.anderson, et al, Quantum Monte Carlo on graphical processing units, Computer
Physics communications, volume 177, pages 298-306, 2007.

2. R. Schürer. Parallel High-dimensional Integration: Quasi-Monte Carlo versus Adaptive
Cubature Rules, Proceedings of the International Conference on Computational Science –
ICCS 2001, volume 2073 of Lecture Notes in Computer Science, pages 1262–1271. Springer-
Verlag, San Francisco, CA, USA, May 2001

3. R. Schürer. Adaptive Quasi-Monte Carlo Integration Based on MISER and VEGAS. In

H. Niederreiter, editor, Monte Carlo and Quasi-Monte Carlo Methods 2002, pages 393–406.
Springer-Verlag, February 2004.

4. J. Bull and T. Freeman, Parallel algorithms for multi-dimensional integration,
 Parallel and Distributed Computing Practices, 1(1):89{102, 1998.
5. P. Zinterhof, High Dimensional Integration: New Weapons Fighting the Curse of

Dimensionality, Physics of Particles and Nuclei Letters, Vol. 5 No. 3, pp. 145-149, 2008.
6. Thomas Gerstner and Michael Griebel, Numerical Integration using sparse grids, Numerical

Algorithms, Vol. 18 , pp. 209-232, 1998.
7. S. C. Kugele and L. T. Watson, Multidimensional Numerical Integration for Robust Design

Optimization, Proc. 45th ACM Southeast Conf. pp. 472-477, 2007.
8. Art B. Owen, The dimension distribution and Quadrature test functions, Statistica Sinica,

Vol. 13, pp. 1-17, 2003.
9. L. Smith and M. Bull, Development of mixed model MPI/OpenMP applications, Scientific

Programming, Vol. 9, No. 2-3, pp. 83-98, 2001.
10. OpenMp illustration, retrieved from: http://en.wikipedia.org/wiki/File:Fork_join.svg
11. Bailey, David H., & Borwein, Jonathan M., Highly Parallel, High-Precision Numerical

Integration. Lawrence Berkeley National Laboratory: Lawrence Berkeley National
Laboratory. LBNL Paper LBNL-57491, 2005.

12. Neutron Scattering, retrieved from: http://neutron.magnet.fsu.edu/neutron_scattering.html.
13. ORNL Institutional Cluster. https://oic.ornl.gov/.
14. Monte Carlo Techniques, retrieved from:

http://einstein.drexel.edu/courses/PHYS405/Monte_carlo/index.html.

APPENDIX A . INTEGRATION VARIABLES TRANSFORMATION

In order to solve the integral

A variables transformation is necessary.
Recall
Let

Substitute these values in the integral

The implemented Quasi Monte Carlo uses the Sobol’s sequences to generate random samples. The
generated samples are numbers in the interval [0,1]. To compute the integral, we need to transform
variables of integration.

Let

APPENDIX B. ORNL INSTITUTIONAL CLUSTER (OIC)

Fig. B.1 . ORNL Institutional Cluster (OIC)13

Our code was tested on ORNL Institutional Cluster (OIC) shown in Figure B.1. OIC has
different types of nodes. The NSSD “Block” that we used to run our code is a block of 22
nodes, with 3.11 peak TFLOP, and 16GB memory per node, but that is not the entire OIC.
More information about OIC is available at http://oic.ornl.gov.

