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ABSTRACT 

The variation of household attributes such as income, travel distance, age, household 

member, and education for different residential areas may generate different market 

penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with 

higher PHEV ownership could increase peak electric demand locally and require utilities 

to upgrade the electric distribution infrastructure even though the capacity of the regional 

power grid is under-utilized. Estimating the future PHEV ownership distribution at the 

residential household level can help us understand the impact of PHEV fleet on power 

line congestion, transformer overload and other unforeseen problems at the local 

residential distribution network level. It can also help utilities manage the timing of 

recharging demand to maximize load factors and utilization of existing distribution 

resources. This paper presents a multi agent-based simulation framework for 1) modeling 

spatial distribution of PHEV ownership at local residential household level, 2) 

discovering “PHEV hot zones” where PHEV ownership may quickly increase in the near 

future, and 3) estimating the impacts of the increasing PHEV ownership on the local 

electric distribution network with different charging strategies. In this paper, we use 

Knox County, TN as a case study to show the simulation results of the agent-based model 

(ABM) framework. However, the framework can be easily applied to other local areas in 

the US.  

 

1. INTRODUCTION 

 

By introducing Electric Vehicles (EV) that can operate in a full electric mode and be 

powered by the electricity grid will largely reduce the Green House Gas (GHG) emission 

and reduce the US dependence on the foreign oil import (1). However, anxiety by 

consumers from battery travel range is a major concern for potential electric vehicle 

buyers. When electrical charge stations are not widely deployed for convenience battery 

recharge, fear of being stranded in an electric vehicle due to insufficient battery capacity 

will be a major deterrent for wide-spread acceptance of the EV in current period.     
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Plug-in hybrid electric vehicles (PHEV) received considerable attention in recent 

years (2). A PHEV is different from an EV whose battery is the only energy source for 

propelling the vehicle and which needs the electric recharge station on the road for refuel, 

a PHEV can be viewed as a regular hybrid electric vehicle (HEV) with bigger battery 

capacity and a recharge capability from power grid. Drivers can fill the PHEV up at the 

gas station on the road and also plug it in for recharging at home (3). The energy stored in 

the PHEV battery pack will be used first like an EV for local commute travel, and the gas 

will be used for greater distance travel and backup. The PHEV can operate in charge 

sustaining mode like a regular HEV should the driver need to drive longer distance and 

there are no battery recharge stations available on the road.  

The electric recharge capability of PHEV offers more promise to replace a significant 

portion of the nation’s current fuel-based light vehicle fleet and alleviate dependence on 

petroleum fuels before the EV battery recharging infrastructure is fully deployed 

nationwide. The burden of an undeveloped recharging infrastructure is transferred to the 

power grid that supplies electricity to the residence. The general assumption is that the 

electric power grid is built to support peak loads and, as a consequence, suffers from low 

asset utilization rates in off-peak periods. In principle, this under-utilized capacity could 

effectively power a national fleet of PHEVs with little need to increase the energy 

delivery capacity of the existing grid infrastructure. Kintner-Meyer et al. (4) indicated 

that existing electric power generation plants would be used at full capacity for most 

hours of the day to support up to 84% of the nation’s cars, pickup trucks and SUVs for a 

daily drive of 33 miles on average. However, the assumption does not consider that 

PHEV users will most likely charge their vehicles when convenient, rather than waiting 

for power grid off-peak periods. For example, drivers will plug in for recharging their 

PHEVs in early evening when they return home from work.  

In recent years, it has been recognized that the need to increase the electric capacity 

for large PHEV acceptance by consumers can be mitigated by several factors including 

market penetration and distribution of the PHEVs, and the vehicle charging time. A 

number of studies have modeled the impact of different scales of PHEV market 

penetration on the power grid (2, 3, 5). Hadley and Tsvetkova (6) indicated that most 

regions would need to build additional generation capacity to meet the added electric 
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demand when PHEVs are charged in the evening. Lilienthal and Brown (7) showed that 

uncontrolled charging strategy of PHEVs would place increased pressure on power grid. 

No additional generation capacity would be required for a large penetration of PHEVs 

only when all charging cycles start in the off-peak periods. Lemoine et al. (5) also 

mentioned that the system generation requirements were calculated for 1, 5, and 10 

million PHEVs charging from the California grid, assuming an effective charging rate of 

1Kw. Letendre and Watts (8) have looked at the charging loads of three different PHEV 

penetration rates (i.e., 50k, 100k, and 200k) and three different charging scenarios such as 

uncontrolled charging, delayed charging, and off-peak charging. 

Most current research is focused on PHEV charging load impacts on state and 

regional electric grids based on total electric generation capacity level. The PHEV 

charging loads are computed based on different charging strategies that the future PHEV 

fleet may adopt. By aggregating all PHEVs’ charging consumption and comparing the 

result with the total state or regional electric grid’s maximum, the researchers can 

validate if there is sufficient electric capacity for assumed PHEV penetration rate. 

However, the research has made the assumption that newly purchased PHEVs in the 

future will be evenly distributed across residential areas and ignores the possibility of 

imbalanced PHEV penetration in different residential areas. Practically speaking, since 

the PHEV penetration rate has a correlation with household demographic attributes such 

as income, travel distance, age, household member, education and neighborhood effect, 

the variation of these household demographic attributes in different residential areas may 

generate different PHEV penetration rate patterns. In this case, if a region with the total 

electric generation and power grid capacity are under-utilized and too many consumers 

on a given circuit recharge their plug-in vehicles simultaneously, it could increase peak 

electric demand locally and require utilities to upgrade the electric distribution 

infrastructure. 

Understanding the impact of the PHEV fleet on electric line congestion, transformer 

overloads and other unforeseen problems with the electric distribution network at the 

local residential level and estimating potential “PHEV hot zones” are challenges faced by 

today’s utilities system.  These residential distribution networks will experience the new 

load as a significant impact even if PHEV acceptance is small in the beginning. There 
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may be specific points along some electric distribution lines that face congestion if local 

patterns of electricity demand change significantly because of PHEV recharging. At the 

substation levels, the demands are less aggregated—and as a result, there are more 

variable and sensitive to the usage patterns of a few customers. Understanding the future 

potential “PHEV hot zones” and estimating the “PHEV hot zones’” impact on local 

electric distribution network can help utilities manage the timing of recharging demand to 

maximize load factors and utilization of existing distribution resources.  

To evaluate the impact on the local electric distribution network, it is necessary to 

estimate several factors including the distribution of PHEVs, owner driving behavior and 

charging pattern at the individual household level. The objective of this research is to 

develop an agent-based framework for 1) modeling spatial distribution of PHEV 

household adoption in residential areas, 2) evaluating the impacts of PHEVs charging 

load on a residential electric distribution network with different charging strategies, and 3) 

discovering “PHEV hot zones” where PHEV ownership may quickly increase in the near 

future. We use Knox County, TN as a case study to show the simulation results of the 

proposed agent-based model (ABM)framework. However, the framework can be easily 

applied to any other local area in the US.  

The framework use multi agent-based simulation to produce possible global outcomes 

(the PHEV distribution and PHEV charge load) given sets of assumptions of how 

individual agents decide about adoption of new technology for their future vehicle and 

charge pattern for their PHEV. The simulation results from this framework may help 

utilities to prioritize investments given electric load growth projections.  

The paper is organized as follows: Section 2 describes the agent-based PHEV 

household adoption model for estimating PHEV ownership distribution in local 

residential areas. Section 3 discusses the county level synthetic household data generated 

and how the data are used for estimating individual household’s PHEV choice behavior. 

Section 4 presents the agent-based simulation platform for modeling the households in 

the Knox County and the PHEV ownership and discusses the imbalanced PHEV 

ownership distribution. Section 5 deals with the potential PHEV charging impact because 

of the imbalanced PHEV ownership distribution in the local area. Section 6 discusses the 

model verification and validation and final conclusions are given in Section 7.     
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2. PHEV OWNERSHIP DISTRIBUTION MODEL 

 

Existing PHEV adoption models and market penetration models provide an estimate of 

future PHEV market share and percentage of total vehicle at the national level. There are 

no published research efforts that can provide  a PHEV ownership distribution model at 

the local residential household level. To understand the PHEV charging load impact on a 

local residential distribution network, it is necessary to build a PHEV ownership 

distribution model t the local household level. The PHEV ownership distribution pattern 

of a residential community is an emergent group phenomena determined by the choice 

behavior of individual households for new vehicle selection. Since different demographic 

attributes of individual household can affect the household PHEV purchase decision, the 

probability of an individual household to choose PHEV as their next new vehicle may be 

different. There is a research needed to build a PHEV ownership distribution model at the 

macro level from the individual household’s PHEV choice at local level.  

A growing realization across the social sciences is that one of the best ways to build 

useful theories of group phenomena is to create computational models of social units (e.g., 

individuals, households, firms, or nations) and their interactions, and observe the global 

structures produced by their interactions. ABM and its computer simulation of human 

behavioral and social phenomena is a successful and rapidly growing interdisciplinary 

area. The ABM is a new approach that aims to model the complex social macro dynamic 

behaviors emerging from the interactions of autonomous and interdependent individual 

actors. ABM builds social structures from the ‘bottom-up’, by simulating individuals 

with virtual agents, and creating emergent organizations from the operation of rules that 

govern interactions among agents.  

Like many other social phenomena, PHEV household adoption or ownership 

distribution has a spatial-temporal dimension and involves dynamic decisions made by 

individuals. This effort uses an agent-based model to combine household demographic 

information in Knox County, TN with nationwide vehicles sale, cost and energy cost 

prediction data from U.S. Energy Information Administration (EIA)’s Annual Energy 

Outlook (AEO) 2010 report (9) for generating the possible PHEV ownership distribution 
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in Knox County households for the time period of 2011 – 2020. The model offers deeper 

understanding of how various factors at the household level shape PHEV distribution and 

charging patterns in electric distribution network.  

The results of the ABM approach is that households are not treated in the same 

manner when choosing their new vehicle since each household will have different tastes 

and preferences in terms of performance, energy efficiency, price, cargo space or seating 

available, etc. The model explores issues such as the exclusion of individuals and is based 

on plausible economic decision rules while incorporating ideas of performance and price 

at the same time. In general, the model offers a simplified representation of reality by 

attempting to capture only the most important elements of the phenomenon under study. 

We use a few simple, theory-based rules to guide the behavior and decision of the 

individual agents. The interactions of individual households in the model produce the 

emergent PHEV ownership patterns. In addition, individual households in the ABM are 

able to make dynamic decisions based on changing information, such as gasoline price, 

existing PHEV ownership, government policies, etc.  

The agent-based household PHEV ownership distribution model has integrated the 

ORNL consumer choice model (10), a new stigmergy-based neighborhood effect model 

(11) for estimating the probability of consumer’s selection for different PHEV and 

University of Michigan’s UMTRI model (12) for estimating the time when consumer 

start searching for a new car.  

The ORNL model is used for estimating the consumer’s vehicle choice probability 

based on consumer’s attributes, the cost and performance of the vehicle, gasoline and 

other energy cost, and the government policies. The core of the ORNL model is the 

Nested Multinomial Logit (NMNL) module that estimates the users’ choice probability 

on 13 different kinds of advanced vehicle technology. The US market is divided into 

1458 market segments and the total market share of different technologies is aggregated 

from the market segments into the national level. The model is capable of estimating the 

result from 2005 – 2020. Since our interest is estimating the ownership distribution of 

different kinds of PHEV and their impact on local community power supply, we used 

four different categories to represent the domain of advanced vehicles consumer can 

choose from (i.e., PHEV-10, PHEV-20, PHEV-40 and others, which include HEV and 
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traditional Internal Combustion Engine (ICE) vehicles) rather than using 13 advanced 

vehicle technologies listed in the original model. This consumer choice model is used as 

the individual agent decision rule for selecting the vehicle from available PHEV choices. 

The model can be represented in following mathematical equations. 
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where, 
i: the household index 
j: the vehicle index 
k: the index of all other vehicles 
a: the index of observed attributes 
A: the total household attributes that have correlation with the probability of consumer’s 
decision for choosing vehicle j  

jax : the vehicle’s attributes 
β : the parameter determining the impact fact of the different vehicle attributes to 
consumer’s choosing. 
    

On the other hand, the consumer transportation budgets serve a major role in UMTRI 

model for estimating the time when agents start to actively search for a new vehicle. 

Consumer transportation budgets are comprised of fixed and variable terms as follows:  

 
Budget = C1 + C2 + C3     (2) 

 
where, 
C1: the monthly vehicle payment 
C2: the monthly fuel cost 
C3: the vehicle maintenance cost. 
 

All consumers will stay within their budgets. For every time period, the agent will 

review their transportation budget status and decide whether or not it is time to buy 

another vehicle.  

The additional model we added for consumer vehicle choosing model is 

“neighborhood effect”. Recent research (12, 13) has used the neighborhood effect as one 

attribute for predict the consumer’s vehicle choice. But how the “neighborhood effect” 
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numerically contributes on the consumer’s decision for their new vehicle is still an un-

answered question. In bio-inspired computing area, the “nationhood effect” has been 

explored for decades and a different term “stigmergy” is used. The stigmergy term was 

first proposed by Pierre-Paul Grasse in the 1950s in conjunction with his research on 

termites (11). The concept of stigmergy provides a theory for explaining how individual’s 

behavior or contribution causes indirect effects on other neighbor individuals behavior. 

Because of space limitations, please refer to (11) for detail. The mathematical equation 

we used for numerically computing the  individuals behavior or contribution is described 

in Equations (3), (4), and (5).  
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dP  is the positive effect for one kind of vehicle. For this kind of vehicle ownership in 

neighborhood or other social network connected by areas, the positive effect dP  is 

incremented by a constant, γ, as shown in Equation (3). At the same time, the positive 

effect dP  will decay as time passes. The decay rate τε −  will be applied on dP  every time 

cycle as shown in Equation (4). Equation (5) describes the vehicle d ’s probability dρ  of 

being chosen. N is the total number of forum threads. The constants F and K are used to 

tune the consumer’s vehicle selection behaviors. 

The agent in this ABM represents individual households that have different attributes. 

The combination of the three decision models described above will help each agent make 

an independent choice about whether to buy a PHEV or not. If each agents household is 

geo located, the global behavior about the community PHEV ownership distribution can 

be generated from the interaction and independent decision of individual agents in the 

simulation. Accurately generating PHEV ownership distribution in a local community 

needs high fidelity household characteristics that can be used in the ABM simulation for 
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estimating each individual household (agent) vehicle choice behavior. The high fidelity 

input data for agent-based simulation is the first level of guaranty for the simulation to 

generate useful results. Without some degree of accurate input data, no model can 

generate predictive results that can be used to support decision making. Collecting the 

individual household characteristics information of the targeted community is extremely 

important for understanding the local community PHEV distribution and their impact on 

local electric distribution network.  Nevertheless, due to high survey costs, low response 

rate and privacy concerns, detailed household and personal characteristics are usually 

unavailable. One solution is using population synthesizers to reconstruct 

methodologically rigorous estimates of household characteristics from survey data, such 

as Public Use Microdata Sample (PUMS) (15) and Census Summary Files 3 (SF3) (16). 

In the next section, we will briefly describe a copula-based household synthesizer that 

is designed to preserve the inter-variable dependence structure among survey samples. 

The synthesized households generated from our research results in the same local SF3 

statistics at each block group while having similar inter-variable correlations as described 

in the PUMS. For more details about this synthetic household generation approach, 

please refer to (17).       

 

3. SYNTHETIC HOUSEHOLD CHARACTERISTICS 

 

Most of simulations suffer from a shortage of accurate data of local residency. Without 

accurate data, the usability of the results generated from the simulation are limited. The 

first step will be allocating local household data for the simulation. In this paper, the 

virtual Knox County households are generated from our unique copula-based household 

synthesizer, in which the households have the same attributes with known local 

distributions (i.e., SF3 statistics) at each census block group while having similar inter-

variable correlations as observed in the PUMS.   

Our copula-based virtual household synthesizer is based on detailed demographic 

samples from PUMS that are based on a 5% sampling rate and are grouped in 

geographical units named Public Use Microdata Areas (PUMAs). The PUMA is 

determined in a way that it must contain approximately 10,000 households from a  
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population of 200,000, so the privacy of each survey respondent is well-protected. 

However, it also results in coarse a spatial extent and hence is a disadvantage for 

regional-specific studies. Local summary tables are obtained from SF3, which are in the 

geographical units called Block Groups (BGs). The SF3 information is based on the 

Census long forms (16.7% sampling rate) and further adjusted by short forms data (100% 

sampling rate). Therefore, the summary information is deemed the most accurate public 

demographic statistics. In this paper, the copula-based virtual households are derived 

from PUMS and then locally fitted to SF3 summaries. 

Figure 1 shows the study area (Knox County, TN) with 234 BGs and three PUMAs 

(i.e., 01301, 01302, and 01400). Since the PUMA and BG boundaries are not always 

colocated in Knox County, when one BG corresponds to multiple PUMAs, it is assigned 

to the largest PUMA for simplification. Overall, 157,758 virtual households (368,666 

members) are synthesized. Considering PHEV purchasing and usage, several potentially 

relevant household demographic variables are drawn, including:  

1X :  Household total income in 1999 (HINC, units in $). 

2X :  Number of household member (PERSON) 

3X :  Number of workers (WIF) 

4X :  Number of vehicles (VEHICL) 

5X :  Household highest educational attainment (EDUCmax, unit in Census education 
attainment index), derived from individual records. 

6X : Household total travel time to work (TRVTIMEsum, unit in munites), derived 
from individual records. 

 
Since the household is assumed to be the decision-making unit for PHEV purchasing, 

only family and non-family households are considered in this paper (i.e., group quarters 

are excluded). For each PUMA, a unique copula-based synthesizer is constructed. The 

marginal distributions )( jXj xFu
j

= , 6,...,1=j  are derived by non-parametric kernel 

density functions, in which the discrete-continuous transformation is considered for 

PERSON, WIF, VEHICL, and EDUCmax. The correlation matrix Σ  is computed by 

Spearman’s r , and then corrected for formatting issues (tolerance ε  set to be 0.002). The 

Gaussian copulas 
dUUC ,...,1
 are then used to synthesize virtual households. 
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Figure 1 Illustration of 3 PUMAs and 234 BGs in the Knox County. 

 

At the local level, SF3 summaries for each BG are collected and treated as constraints. 

However, it should be noted that not every variable has a corresponding local summary 

and some variables have different universes (HINC and PERSONS: total households, 

WIF: total families and VEHICL: total occupied housing units). In order to avoid making 

extraneous assumptions, we are only taking HINC and PERSONS summaries as the two 

local constraints in this case study. Following the local fitting procedures, virtual 

households are assigned for each BG. Figure 2 illustrates the Knox County virtual 

household distribution. Each red dot in the Figure 2 represents 10 virtual synthetic 

households generated through copula-based synthetic population reconstruction approach.   
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Figure 2 Knox County virtual household distribution. 

 
4. THE ABM SIMULATION PLATFORM  
 
There are many widely used platforms for ABM simulation: MASON, NetLogo, Repast, 

and Swarm. We used the NetLogo (18) multi-agent simulation tool to develop our model 

primarily because it is freely available on the web, well documented and supported. In 

this tool, agents move around a virtual world, interacting with other agents. There is no 

centralized control or co-ordination of the agents’ actions. Agents are responsible for 

maintaining their own state. The NetLogo virtual world consists of a grid of ‘patches’, 

each of which can have a state and agents having only local knowledge about their 

surroundings. Both agents and patches are active agents in the simulation, performing 

actions and asking other agents to perform other actions. The simulation proceeds by 

each agent and patch repeating its behavior independently, often by following stochastic 

functions influenced by the agent’s state and local environment. Agents perform their 

own actions asynchronously and as rapidly as they can. In an agent-based simulation, the 

overall behavior of the system is an emergent property of the individual, independent 

interactions of the agents.  

Figure 3 depicts the proposed household PHEV distribution simulation platform. One 

agent represents one household. Each household agent is created with certain attributes 

extracted from the synthetic household data discussed in Section 3. Each agent has 

specific rules of behavior to determine how the households select when and what kind of 
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PHEV. There are total 190,965 households in the Knox County, which means 190,965 

agents are created in this simulation platform. Once all agents are initialized, the model 

proceeds according to internal clocks. Essentially, all agents are engaged in PHEV 

selection activity during each period (1 calendar month). Simulated household and its geo 

locations, as well as the current status of the vehicle are updated each simulation period 

(1 calendar month) month. 

  

 
Figure 3 The household PHEV distribution simulation. 

 
5. EXPERIMENTAL DESIGN AND RESULTS  
 
5.1 PHEV Ownership Distribution in Census Block Groups 
 
We used the two scenarios, Base Case and FreedomCARGoals Case defined in (10) to 

illustrate the different household PHEV distributions in the Knox County. The same 

energy prices are used in the two cases. We used the output of (10) for PHEV distribution 

model calibration to confirm that the proposed model generates similar total estimated 

PHEV sales each year from 2011 to 2020. We aggregated the individual household 

PHEV based on the census block group (i.e., 234 BGs in the Knox County) in which 

individual households are located. By using PHEV ownership distribution model and the 

synthetic household data, we are able to estimate the vehicle type for each household in 

each simulation month. For demonstrating the PHEV distribution in the local community 
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and discovering the “PHEV hot zone” (defined as the highest PHEV ownership 

concentration), we aggregated the individual household PHEV based on the BG in which 

individual households are located. The estimated distribution of the PHEV in Knox 

County for the year of 2020 based on two different scenarios can be shown in Figure 4. 

The height of the bars in different BG represents the total number of PHEVs in this BG. 

The longer the bar is, the more PHEVs are in the corresponding BG.  As shown in Figure 

4, the FreedomCARGoals scenario will have a higher PHEV market penetration than 

Base Case. However, both have very similar PHEV distribution patterns in Knox County; 

that is, both scenarios indicate that the southwest portion of the county (which is the 

Town of Farragut) will have the highest PHEV concentration. This area is considered as 

the “PHEV hot zone”.  

 

 
(a) Base Scenario 
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(b) FreedomCARGoals Scenario 

Figure 4 PHEV Distributions for Basic and FreedomCARGoals Scenarios (2020)  
 
5.2 PHEV Impact on Local Distribution Network 

 

By using the PHEV residence distribution result for the FreedomCARGoals Scenario 

generated from above experiments, we are able to conduct preliminary analysis of the 

PHEV battery charge load impact on local electric distribution network. According to our 

simulation output, the total PHEVs in FreedomCARGoals Scenario will reach 8,192 in 

2020 in the Knox County. The most often used method for estimating the impact of the 

PHEV on the power grid is the worst case scenario, implying that all PHEVs will plug in 

simultaneously for battery charging during the grid peak time. If each PHEV will 

consume 1.45Kw during its battery charging, the peak load for all PHEVs in Knox 

County will be 11,878Kw. However, in most cases, because different PHEV drivers will 

have different travel patterns and charge time schedules, the maximum possible total load 

pattern for uncontrolled evening charging will be similar to Figure 5. In this scenario, it is 

reasonable to assume that the vehicle owner begins charging the vehicle upon arriving at 

work in the morning and upon returning home from work. The black area represents the 

charge load at work and green area indicates the total load while at driver’s residence. 

Charging start times are decided by the PHEV driver’s commute time from work to home 

and from home to work. Three different types of PHEV (i.e., PHEV-10, PHEV-20 and 

PHEV-40) need to be charged from 2 to 6 continuous hours, respectively.  
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The census block 46, 57, 58 and 62, out of total 234 BGs in Knox County, have the 

highest estimated PHEV ownership distribution. The total PHEVs in these four BGs are 

2,670. According to our simulation output, the evening peak charging load for these four 

BGs can reach 3,625Kw, which is 32.6% of total PHEV charging load generated by the 

PHEV fleet in the Knox County. These BGs can be considered as the “PHEV hot zones” 

which could increase peak demand locally and require utilities to upgrade the electric 

distribution infrastructure in the near future. 

   

 

Figure 5 The charging load for uncontrolled PHEV charging system. 

6. MODEL VALIDATION DISCUSSION 
 
This paper proposed an agent-based framework for simulating local community 

household PHEV distribution and electric network impact. Several models are used in 

this framework. All models need to be validated before it can be accepted and used to 

support decision making. Part of the hesitance to accept multi agent-based modeling and 

simulation results rests in their perceived lack of robustness. Independent intelligence of 

agents, the large number of concurrent and non-trivial interactions between those 

members, varying rates of learning and what is learned, development of varying goals, 

the extremely large size of the state space, and other factors make the verification and 

validation (V&V) of multi agent-based models difficult at best. Validation is the process 

of determining whether we solved the right problem (e.g., correctly modeled physical 

laws, implemented business rules, used the proper system assumptions) and satisfied the 

intended use and user needs (19). Verification, on the other hand, is the process of 

determining whether the software or system was built correctly.   

Because of the heterogeneity of the agents and the possibility of new patterns of 

macro behavior emerging as a result of agent interactions at the micro level, model 

validation in agent-based complex social systems is different from the traditional 
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validation (20-24). For this research, we are conducting two additional stages of model 

validation, corresponding to the two levels at which agent-based models exhibit behavior: 

the micro level and the macro level. The first stage is the micro-validation of the behavior 

of the individual agents in the proposed model. In the simulation, agents are simplified 

and general representations, not replications of specific human individuals. The 

simplicity and generality reduces the ambiguity of any analysis of their behavior and 

social interaction at the cost of losing expressiveness relative to qualitative studies of 

observed actors. The only behavior we implemented in the agent is vehicle choice 

behavior model adopted from existing publication which has been partially validated. The 

synthetic household data employed by the proposed simulation framework to generate 

estimated results has proven to have the same local SF3 statistics at each block group 

while having similar inter-variable correlations as described in the PUMS.  

The second stage is macro-validation of the model’s aggregate or emergent behavior 

when individual agents interact. We will compare the macro results of our agent-based 

model results with mathematical model results by using method addressed in (25-27). 

There already exist many mathematical models for estimating the PHEV market 

penetration at the national level. These provide for comparison of the result from our 

model with the result from these mathematical models. However, our framework mainly 

focuses on estimating the probability of a local community’s PHEV penetration rate 

instead of national level. Our next research goal will be applying our agent-based 

framework to every county in the country and simulating the household PHEV 

distribution of these counties. Aggregation of the results will be the national level PHEV 

penetration and can be used for direct comparison with the results of mathematical 

models (21).  

 
7. CONCLUSIONS 
 

In this paper, we have presented an agent-based simulation framework for modeling the 

spatial distribution of PHEV ownership in a local residential area and evaluating the 

impacts of PHEVs charging load on the residential electric distribution network. Our 

approach for generating synthetic household characteristics is described. Knox County, 

TN is used as a case study to show the simulation results of the proposed ABM 
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framework. The variation of household attributes such as income, travel distance, age, 

household member, and education, for different residential areas may generate different 

PHEV market penetration rates. Residential neighborhoods, where multiple PHEV 

consumers share a given circuit to recharge their plug-in vehicles, could increase peak 

demand locally and require utilities to upgrade the distribution infrastructure.  

Estimating the future PHEV ownership distribution in the residential area can help us 

understand the impact of an emergent PHEV fleet on electric line congestions, 

transformer overloads and other unforeseen problems at the local residential distribution 

network level. It can also help utilities manage the timing of recharging demand to 

maximize load factors and utilization of existing distribution resources. The current 

simulation is purely based on statistical data for estimating the adoption rate of the PHEV. 

Our next step will integrate this simulation with power systems simulations and a 

transportation simulation to study the impacts.  
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