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Abstract 

 
Within agent systems, two entities, namely hosts 

and agents, subsist and require protection against 
potential malicious acts. The use of such agent systems 
to support the development of practical applications is 
limited primarily by the risks to which hosts in the 
system are subject to. This article introduces a 
distributed and adaptive security-monitoring 
framework to decrease such potential threats. The 
proposed framework is based on a modified version of 
the popular Boosting algorithm to classify malicious 
agents based on their execution patterns on current 
and prior hosts. Having implemented the framework 
for the Aglet platform, we herein present the results of 
our experiments showcasing the detection of agent 
entities in the system with intention deviating from that 
of their well-behaved counterparts. 
 
1. Introduction 

Mobile Agents refers to a programming paradigm 
focused around the ability for a program to halt its 
execution, move to a new environment where 
execution can then be resumed. Even with the 
development of numerous mobile agent platforms such 
as Aglet [16], an open source system originally 
released by IBM, the use of mobile agents have not 
transcended from theoretical to practical applications 
due to the numerous security threats plaguing the 
paradigm. The security threats facing mobile agents, 
including Aglets, have been studied in depth and 
categorized into host-to-agent and agent-to-host [8]. A 
thorough study of the Aglet platform has been 
conducted in order to assess the security level provided 
by the Aglet server. The study resulted in the 
introduction of a new server, aptly named Secure Aglet 
Server (SAS) [13]. SAS provides secured 
communication through SSL, makes use of the Java 
Cryptographic Extension (JCE) [12] to support the 
notion of Read-Only Data thereby providing agents in 

the system with the ability to verify the integrity of 
collected data. Furthermore, SAS introduces the notion 
of a MonitorAglet capable of preventing Aglets from 
initiating a Denial of Service (DoS) attack on host 
through seemingly normal transition from one lifecycle 
state to another.  

It has been suggested by the Computer Security 
Division of the National Institute of Standards and 
Technology that one of the main hindrance to the 
adoption of mobile agent technology stems from the 
security concerns of hosts [11]. While SAS has 
rendered the Aglet platform more secure, it has 
approached the security problem from an isolated 
standpoint in regards to the host. It is fair to note that 
any mobile agent system is inherently suitable to 
support distributed applications; hence, securing such 
systems need to take into account the distributed nature 
of the environment. Malicious agents are not a threat 
solely to the current execution environment but to any 
host to which they may migrate to. We herein 
introduce a boosting-based monitoring system that 
allows hosts to learn and classify agents through 
collaboration. 

While effectively addressing the security issues 
within the confines of the specified goal, SAS merely 
reacts to malicious agents attempting DoS attacks. The 
malicious agent itself is never destroyed and the 
occurring attack is thwarted by controlling the 
resources in use by instances of the attacking agent. 
The system does not take into account the fact that a 
misbehaving agent may travel from one host to another 
and repeat its actions. As SAS only controls the 
number of instances of an agent, a malicious entity 
could abuse its privileges and migrate to another host 
once it has reached its instance limit. Such a malicious 
entity could indeed migrate over numerous hosts in a 
domain and effectively wreak havoc.  

Moreover, as it now stands, SAS reacts to attacks 
but does not prevent any such occurrences. Hence, 
improving the security of the system requires: 



- Collaboration between hosts to identify malicious 
agents. 

- Ability for the MonitorAglet of hosts to learn from 
experience and thus prevent attacks. 

This article introduces a novel distributed and 
adaptive security-monitoring framework that 
strengthens the security of SAS. 

The remainder of this article starts out by 
introducing the necessary background relevant to our 
work in section 2. Section 3 discusses the proposed 
scheme, along with the design decisions with which 
we were faced in implementing the algorithm within 
SAS. Section 4 describes the experiments conducted 
along with the observed results. We conclude the paper 
in section 5 highlighting the benefits of our approach. 
 
2. Background & Related Work 
2.1. Mobile agent security 

Along with flexibility in system design, agent 
mobility also introduces security concerns. The 
categorization of the threats plaguing mobile agents is 
done based on the origination of the attack; as such we 
have agent-to-host, as well as host-to-agent attacks. 
Such security issues in mobile agents have been 
studied and some of the proposed solutions include but 
are not limited to the following:  
- Code signing, access control, proof carrying code 

and path histories to protect the hosts [6, 8, 18]. 
- Tracing, obfuscation, trusted hardware as well as 

encrypted functions and data to protect the mobile 
agents [2, 6, 8, 18]. 

Research in mobile agent security is still an open 
field, and many of these approaches remain theoretical 
at best. Furthermore, previous proposals suffer from 
reliance on an isolated view of agent systems. 
 
2.2. Supervised Learning 

Supervised learning focuses on the ability to extract 
patterns from a set of raw data whose categories are 
known. Various algorithms have been introduced to 
allow extraction of existing patterns in a data set. Such 
algorithms include Support Vector Machines (SVM) 
[7, 9], which attempt to construct and maximize a 
separating hyper-plane upon mapping the data onto a 
higher dimensional space. Other approaches include 
neural networks, decision trees, as well as boosting [9]. 
Boosting has an interesting property, in the fact that 
training occurs in stages. In each stage of boosting, a 
weak classifier is trained using a subset of the raw 
data. The set of trained classifiers yield the learning 
function used to determine how to categorize future 
data samples. Furthermore, due to the fact that 
boosting learning function emanates from several weak 

classifiers, it is easily adaptable to a distributed 
environment where each weak classifier may operate 
from different sources. It is this inherent ability of 
boosting that we attempt to harness in this article to 
address the issue of identifying malicious agents 
operating across several hosts. 
 
2.3. Related Work 

Agent collaboration has been the focus of various 
research efforts in recent years. Becker et al. studied 
the issue of confidence determination to ascertain its 
effect in collaborative agent systems [1]. The study 
showed that incorrect confidence-integration may 
propagate in a multi-agent system and thus change the 
collaborative answers of the agents. The problem was 
simplified by assuming that trust is not an issue 
between the collaborating agents. Within our 
approach, each of the collaborating agents is extremely 
flexible in integrating confidence factors to yield a 
collaborative result. Moreover, the agents do take trust 
into account in determining the dependence of their 
results upon other agents in the system as they 
collaborate to provide distributed security.  

Chen et al. [3] presented a boosting-based 
hierarchical learning algorithm for experience 
classification. The work was motivated by the need for 
agents within a team to collaborate and learn from their 
past experiences, which may differ from one agent to 
another, as individual agents may only have a partial 
view of the team’s environment. This learning 
algorithm attempts to take advantage of boosting by 
building a hierarchical framework where agents at the 
lowest level may only have a partial view of the 
system. Agents at the lowest level are trained using 
decision stumps based only on the feature set available 
to them. Agents higher up in the hierarchy are trained, 
not based on their observations, but using the 
classification results of the corresponding agents one 
level down the hierarchy. Training in the proposed 
system is hierarchical and tightly coupled amongst 
agents as the classifiers are inter-dependent. The 
hierarchical learning system is not suitable to address 
security concerns as the system is built upon the 
assumptions that the agents are members of the same 
team, thus ignoring any trust issues. Furthermore, the 
fact that the system is built in a hierarchical fashion 
means that the final decision must originate from the 
root of the structure if it is to take into account the 
experience of every possible agent involved. 

 



3. Distributed and Adaptive Security-
Monitoring through Agent Collaboration 
(DASAC) 

We introduce a distributed and adaptive way for 
hosts within a domain to collaborate and learn to 
identify malicious entities based on various 
parameters. By malicious, we mean any entity that 
deviates from the expected behavior of typical agents 
that visit a particular host.  
 
3.1. The DASAC Framework 

The introduction of the following security scheme 
stems from the realization that agents interact in a 
distributed environment; hence, similarly, agent 
security needs to be validated in a distributed manner. 
As hosts monitor agents, data regarding the actions of 
the agent can be recorded. Our work is based on the 
assumption that there is a relationship, though not 
clearly defined, between the actions of an agent and 
the intent of such agent; whether the intent is malicious 
or not. The definition of the set of actions that can help 
determine whether an agent is malicious will vary from 
one host to another and such actions are herein referred 
to as threatening actions. The consistent fact will 
remain however, that a malicious agent on one host is 
highly likely to represent a threat to the security of 
future hosts. Due to the variation in what constitutes a 
malicious agent, any proposed learning scheme must 
allow for such flexibility in identifying potential 
threats. 

Our approach in tackling the problem is through the 
introduction of a variation of the Boosting-learning 
algorithm, here forth referred to as DASAC. In order 
to determine whether an agent is malicious, DASAC 
relies on collaboration between the current host and 
past hosts visited by the agent. The current host acts as 
a decision maker; all hosts including the current one 
act as base learners. We attain the required flexibility 
by allowing each host in the system, as base learners, 
to be trained independently and based on different 
feature sets. A discussion of what feature sets could 
possibly be used follows in the next section. The base 
learners are trained as follows: 
- Implement a binary classifier, which can be a 

decision tree or any other classifier, where 1 is the 
class of malicious agent and -1 otherwise. 

- Train the classifier using a sample data set with 
the threatening actions of the host as the various 
features of each training instance. 

Note that each host in the system may serve as a 
base learner and as a decision maker depending upon 
its contribution to the current decision-making process. 
The base learners, being trained independently, may 
implement various classifiers depending on the host’s 
administrator. 

Upon arrival of an agent to a host, one of two cases 
may be true. The host may be seeing the agent for the 
first time or the host may have had a personal 
experience with the agent. In either of these two cases, 
the host needs to determine whether to allow the agent 
to execute or not. If the host had no priori experience 
with the agent in question, it does not have any 
pertinent information about the agent to classify it as 
malicious or not using its base learner. It must thus rely 
on the hosts that the agent has visited in the past. If the 
agent had in the past executed on the host, the host’s 
base learner can classify the agent. 

Within DASAC, classification of an agent by the 
decision maker is based on the following steps: 
- If the host has had prior experience with the agent, 

the base learner of the host is used to classify the 
agent; else, the agent is assigned to the default 
class of 0. 

- Every host in the agent’s history are contacted and 
asked to communicate to the decision maker their 
classification of the agent as determined by their 
respective base learners 

- Using the possibly diverse experiences of other 
hosts, the decision maker determines whether to 
allow an agent to execute or not. 

In essence, a decision maker (DM) forms a 
hierarchical structure with the various base learners of 
the hosts in the distributed environment to thwart 
attacks. In the final steps, a DM could use various 
techniques in order to reach a consensus such as 
majority-vote. We however recommend a version of 
weighted sum tailored to the problem at hand as 

specified in Equation 1 where Ψ i represent the class to 

which an agent has been assigned by the base learner 

of a host. We allow Ψ i to possibly have a value of 0 in 

order to ignore a base learner that does not have any 
information on the agent as such may be the case for 
the learner on the current host. Furthermore, i, and i 

represent respectively the trust, and confidence levels 
associated with each host being contacted. 



The recommended version of majority vote stems 
from our observations of the underlying mechanisms 
in inter-human collaboration. Consider the case where 
a person, A, asks a friend, B, for his/her opinion on a 
puzzling question; A does not blindly believe B’s 
assertion. Instead, A weighs his opinion and 
confidence on the topic with B’s recommendation 
based on two factors; namely, how much does A trust 
B and how confident is B in his assertion. Thus, the 
confidence level, in the proposed majority vote 
scheme, is determined by the accuracy of the classifier 
used in a host and varies between 0 and 100. The 
confidence of a host is communicated to the DM along 
with the classification of an agent.  

The trust level, on the other hand, can be defined 
statically by the system administrator of a host based 
on the reputation of a particular host. We heuristically 
propose trust levels to be defined as a value between 0 
and 10. A default value can be specified for use 
whenever a remote host’s trust information is not 
available. Notice that setting the default value of trust 
to 0 would effectively allow the monitoring system to 
not take into account the experience/classification of 
unknown hosts. As the definition of trust levels does 
not carry over from one host to another, administrators 
are free in setting the limits of trust values in their 
systems. 

If an agent is allowed to execute in the system, the 
decision maker keeps track of the actions of the agent. 
It can then periodically attempt to classify the agent 
and thus adapt to agents that may execute malicious 
code only on specific hosts. The frequency upon which 
to re-classify an agent is left as an implementation 
detail as it will vary upon the requirements of a host. 

Although DASAC, as described, can be made to be 
completely autonomous, except during training, we 
understand that administrators may need to have 
hands-on control on whether or not an agent should be 
allowed to continue or start execution. To cope with 
such a need, we introduce the notion of Security 
Levels (SL) of agents on a host. The SL of an agent is 
defined (Equation 2) as the ceiling of the product of its 

weighted-sum, as computed in Equation 1, and the 
number of security levels in the system (ß). The result 
is divided by ∆, representing the maximum sum of 
products multiplied by the number of cooperating 
hosts. Note that ∆ is always greater than 0 as n takes 
into account the current host as well. 

While the SL could be calculated for all possible 
value of the weighted-sum, one should note that it is 
not of importance when the weighted-sum is 0 or less 
as such agents have not been classified as malicious. 
Using the SL, the system can be made to be semi-
autonomous, requiring human assistance once a 
threshold has been reached. Agent-human interaction 
can further increase the efficiency of the system as the 
agent can be made to adjust its classifier based on such 
interactions. Thus, DASAC may decide to use the 
collected data about an agent, classify it based on its 
interaction with an administrator and inserts the 
information in the pool of training data. The classifier 
can be periodically retrained thereby leading to an 
adaptive security system. 

 
3.2. DASAC Implementation in SAS 

We have previously discussed the presence within 
SAS of an agent entity, the MonitorAglet, controlling 
the amount of resources being used by any particular 
agent. In implementing the DASAC scheme into SAS, 
the use of the MonitorAglet as the DM of a host was 
an obvious option, which we adopted. The base learner 
on the other hand is implemented as an independent 
agent for flexibility and performance. Having the base 
learner implemented as an agent allows for separate 
thread of execution to handle classification and 
training. Moreover, as agent entities, a host may have 
multiple base learners trained on independent feature 
sets; however within SAS we consider only the case 
where each host has one base learner. Furthermore, in 
our implementation, all base learners are built using 
the classifiers from the weka data-mining library [19]. 
Figure 1 presents a pictorial representation of the 
interaction between DMs and base learners within 
SAS. In a nutshell, we extended SAS by using the 
MonitorAglet as the DM of DASAC, with other agents 
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acting as base learners. The implemented version of 
DASAC makes use of the suggested version of 
weighted sum to classify agents. Moreover we 
implemented the notion of security levels, which are 
used to determine whether interaction with a system 
administrator is needed to dispose of an agent 
classified as malicious. The details of our 
implementation are provided in the remainder of this 
section. 

Our implementation of DASAC defines 5 distinct 
security levels. The MonitorAglet is augmented with 
the capability of requesting interaction from a system 
administrator in order to determine the appropriate set 
of actions to undertake once an agent has been 
identified as a malicious entity of level 3 or lower. 
Malicious agent of levels 4 and 5 are automatically 
denied execution. As the choice of level 3 is an 
arbitrary cutoff point, we allow room for tuning by an 
administrator when the DM is first loaded onto the 
host. 

The set of features selected to train the base 
learners, need to correlate in a manner that 
differentiates malicious entities from non-malicious 
ones in the system. Within SAS, agents are monitored 
and based upon the number of instances running, the 
MonitorAglet can allow or reject a requested action 
such as cloning, dispatching etc. Such actions of agents 
have been proven in SAS to be potentially detrimental 
to the security of a system and thus constitute good 
candidates for inclusion in the feature set. It is our 
belief that the frequency at which an agent requests the 
right to transition from one state to another, along with 
the total amount of time spent on the host, can also 
help in identifying malicious actions. Due to Java’s 
sandboxing techniques, a security manager prevents 
access to entities lacking the proper access rights to 
local resources. As we anticipate that malicious agents 
may attempt to access various resources in the hope 

that the security policy in effect in the system are not 
well defined, we also take into account the number of 
security exceptions generated by an agent as well as 
the frequency at which these exceptions occur. The 
security manager resides within the Runtime layer of 
SAS and in order to track the security exceptions 
generated by an aglet, we introduced a listener class 
through which interested parties can be notified 
whenever such events occur.  

To sum up, we selected the following 9 features to 
train the classifiers: 
- Biased Running Time of an agent 
- The frequency of cloning events 
- The frequency of activations of an Aglet 
- The frequency of dispatch events 
- The frequency of retract events 
- The frequency of arrival events 
- The frequency of security access requests 
- The frequency of security access grants 
- The frequency of security access denials 

Once the feature set has been selected, we trained 
the classifiers in order to extract data patterns that may 
help classify an agent based on its behavior. We used a 
system consisting of 8 hosts. For simplicity, hosts 1 
thru 4 have different classifiers, namely, an alternating 
decision tree with 0 boosting iterations, a fast decision 
tree learner, a decision stump and a naïve Bayes 
classifier. The remaining hosts implement the 
alternating decision tree as well but with 3 boosting 
iterations. Moreover, the first four hosts have different 
trust levels, with all others having the same trust levels.  

Due to the fact that training data for classifiers are 
not readily available, we trained our classifiers using a 
data set generated by tracking the features of interest 
during actual runs of several agent-based applications 
such as MAMDAS [14] and the Private Information 
Retrieval prototype [13], along with the agents that 
were used in assessing the security of SAS [13]. The 
choice of applications used to collect the data was 
based not only on their availability, but also due to the 
fact that their classification is known a priori, as 
discussed in SAS, and encompasses both classes of 
agents of interest to our work. The MonitorAglet 
tracks every event generated by agents in the system 
and construct a data sample for the corresponding 
agent. The constructed sample consists of the features 
that we identified as having the potential to help 
identify malicious entities. 

The generated data set consists of over 3000 
samples, manually classified, of which, roughly 15% is 
used to train each classifier. Each sample represents 
the set of features tracked by the MonitorAglet during 
a run of the agent on the host. The classifiers used the 
remainder of the data set for accuracy assessment. The 

 

Figure 1: Distributed Interaction between DMs 
and base learners 



accuracy of each host classifier is used as the 
confidence level of the host in question, as suggested 
by DASAC, in all our experiments. 

Figure 2 presents a pictorial view of the accuracy 
rate of the hosts in the system over multiple runs; note 
that host 5 really depicts the accuracy rate of hosts 5 
thru 8. The accuracy of hosts shown in Figure 2 was 
determined based on the ability of the host’s classifier 
to properly classify the remainder of the 3000 samples 
in the data set not used for training. During each run of 
the experiment, a random set is selected to train the 
classifiers, hence the slight variation in hosts’ accuracy 
rate over multiple runs.  

 
4. Experimental Analysis 

In evaluating the performance of DASAC, we were 
mainly concerned with two issues. The first one is the 
overall classification accuracy of the system compared 
to a host’s local classifier, and the second is the impact 
of trust level on the accuracy.  

We chose the first host in the system (Host1 from 
Figure 2) as the local classifier against which DASAC 
will be compared. Our choice is based on the fact that 
host 1 has a performance slightly better than random 
guessing. As such, our goal is to analyze how DASAC 
can help improve the performance of a host through 
collaboration. We thus proceeded to launching the 
agent applications used in training the system 
classifiers. We also introduced a PortScannerAglet that 
repeatedly attempts to connect to numerous ports in the 
system whether it has access to conduct such actions or 
not. Furthermore, we manually created, dispatched, 
and retracted the CirculateAglet, WebServerAglet, and 
HelloAglet that comes with the Aglet framework. 
Lastly, we created and used a new version of the 
WebServerAglet that migrates to hosts and attempts to 
set up a server on random ports, restricted or not, 

repeatedly. Our version of the WebServerAglet 
migrates to a new host, once it has been denied access 
to ports over 10 times. Our reasoning behind the 
introduction of new Aglets that were not used during 
the training phase is to gain insights into the ability of 
our classifiers to perform well even in the presence of 
previously unseen behaviors.  

The DM of each host dynamically classifies agents 
to determine whether or not they are malicious. We 
evaluate the system based on the accuracy at which the 
local classifier and DASAC recognize malicious 
agents. We also tracked the best accuracy recorded in 
the system and computed the average accuracy of the 
hosts including the first one. While the confidence 
levels used in the experiments were described in 
section 3.2, the trust levels, on the other hand, were 
assigned randomly. The local classifier is assigned a 
trust level of 9, close to the maximum of 10, to reflect 
the trust that we expect administrators to have in their 
own systems. 

Figure 3 depicts the measured accuracy of DASAC 
compared to that of Host1’s classifier, the best 
accuracy rate measured in the system along with the 
average of host’s accuracy rate. On average, DASAC’s 
performance seems to lie between the average 
accuracy of the involved hosts and that of the most 
accurate classifier. The fluctuations in the accuracy 
rate measured are due to the fact that the hosts are 
trained for every experimental run on a random 
sample. Thus, their performance is slightly dependent 
on the sample used during training. 

While DASAC generally outperforms the worst 
classifier in the system, it matched the first host’s 
performance during the first run of the experiment. 
The only reasonable explanation for such a poor 
performance by DASAC stems from the trust levels 
used during the first experiment. We noted that the 
total trust levels of hosts 2 thru 8 varied from one 
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experiment to the next as follows: 5, 16, 23, 27, and 
36. When the trust levels of the other hosts are low 
compared to that of the local host, DASAC’s 
performance seems to be more dependent on that of the 
local classifier. This brings us to the second set of 
experiments that were carried out to further investigate 
the effect of trust levels on DASAC. During the 
second experiment, we kept the trust levels of all hosts, 
including host 1, identical. The trust levels were 
however varied from one experimental run to the next 
starting at 0 up to 10.  

The results of the second experiment are presented 
in Figure 4 and shows that DASAC still outperforms 
the average accuracy rate computed. The experiment 
revealed two crucial points, the first being that all the 
classifiers in the system can indeed outperform 
DASAC, as is the case when the trust levels are all 0. 
The explanation behind such an occurrence is due to 
the fact that DASAC will classify all samples as 0, 
which is in effect non-malicious. Thus, DASAC will 
fail to classify any malicious agents possibly degrading 
to an accuracy rate of 0. 

The second interesting factor revealed by the 
experiment is the fact that DASAC’s performance 
seems to quickly become dependent upon the accuracy 
rates of the best classifiers in the system. This is 
explained by the fact that DASAC is in effect designed 
to that end in order to take advantage of the strength 
and experience of other hosts in the system. Once the 
trust levels are identical for all hosts, the only 
determining factor in classifying an agent becomes the 
confidence of hosts. The more confident hosts have a 
bigger weight on the system’s classification of an 
entity. 

 
5. Conclusion 

This article has introduced a novel distributed and 
adaptive security-monitoring framework achieved 
through agent collaboration across multiple hosts. To 

the best of our knowledge, this work represents the 
first in its kind to attack agent security through 
collaboration between the hosts in the system. While 
we have only implemented DASAC within SAS at this 
point, it can be easily applied to any agent platform. 
The framework, as we have shown, builds on the idea 
of boosting to allow host protection by classifying 
agents based on their reputation. The system is flexible 
enough to support the incorporation of various 
classifiers that may be trained using independent 
variables, as the hosts do not communicate their 
feature sets to each other. Moreover, DASAC 
introduces the notion of security levels to support 
human-agent interaction in order to render the system 
even more flexible and robust.  
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