
Boosting-based Distributed and Adaptive Security-Monitoring through Agent
Collaboration

Evens Jean†, Yu Jiao§, Ali R. Hurson†, Thomas E. Potok§

† Computer Science & Engineering
The Pennsylvania State University
University Park, PA 16801, USA

{Jean, Hurson} @cse.psu.edu

§ Comp. Sciences & Engineering Division
Oak Ridge National Laboratory

Oak Ridge, TN 37831, USA
{Jiaoy, Potokte} @ornl.gov

Abstract

Within agent systems, two entities, namely hosts

and agents, subsist and require protection against
potential malicious acts. The use of such agent systems
to support the development of practical applications is
limited primarily by the risks to which hosts in the
system are subject to. This article introduces a
distributed and adaptive security-monitoring
framework to decrease such potential threats. The
proposed framework is based on a modified version of
the popular Boosting algorithm to classify malicious
agents based on their execution patterns on current
and prior hosts. Having implemented the framework
for the Aglet platform, we herein present the results of
our experiments showcasing the detection of agent
entities in the system with intention deviating from that
of their well-behaved counterparts.

1. Introduction

Mobile Agents refers to a programming paradigm
focused around the ability for a program to halt its
execution, move to a new environment where
execution can then be resumed. Even with the
development of numerous mobile agent platforms such
as Aglet [16], an open source system originally
released by IBM, the use of mobile agents have not
transcended from theoretical to practical applications
due to the numerous security threats plaguing the
paradigm. The security threats facing mobile agents,
including Aglets, have been studied in depth and
categorized into host-to-agent and agent-to-host [8]. A
thorough study of the Aglet platform has been
conducted in order to assess the security level provided
by the Aglet server. The study resulted in the
introduction of a new server, aptly named Secure Aglet
Server (SAS) [13]. SAS provides secured
communication through SSL, makes use of the Java
Cryptographic Extension (JCE) [12] to support the
notion of Read-Only Data thereby providing agents in

the system with the ability to verify the integrity of
collected data. Furthermore, SAS introduces the notion
of a MonitorAglet capable of preventing Aglets from
initiating a Denial of Service (DoS) attack on host
through seemingly normal transition from one lifecycle
state to another.

It has been suggested by the Computer Security
Division of the National Institute of Standards and
Technology that one of the main hindrance to the
adoption of mobile agent technology stems from the
security concerns of hosts [11]. While SAS has
rendered the Aglet platform more secure, it has
approached the security problem from an isolated
standpoint in regards to the host. It is fair to note that
any mobile agent system is inherently suitable to
support distributed applications; hence, securing such
systems need to take into account the distributed nature
of the environment. Malicious agents are not a threat
solely to the current execution environment but to any
host to which they may migrate to. We herein
introduce a boosting-based monitoring system that
allows hosts to learn and classify agents through
collaboration.

While effectively addressing the security issues
within the confines of the specified goal, SAS merely
reacts to malicious agents attempting DoS attacks. The
malicious agent itself is never destroyed and the
occurring attack is thwarted by controlling the
resources in use by instances of the attacking agent.
The system does not take into account the fact that a
misbehaving agent may travel from one host to another
and repeat its actions. As SAS only controls the
number of instances of an agent, a malicious entity
could abuse its privileges and migrate to another host
once it has reached its instance limit. Such a malicious
entity could indeed migrate over numerous hosts in a
domain and effectively wreak havoc.

Moreover, as it now stands, SAS reacts to attacks
but does not prevent any such occurrences. Hence,
improving the security of the system requires:

- Collaboration between hosts to identify malicious
agents.

- Ability for the MonitorAglet of hosts to learn from
experience and thus prevent attacks.

This article introduces a novel distributed and
adaptive security-monitoring framework that
strengthens the security of SAS.

The remainder of this article starts out by
introducing the necessary background relevant to our
work in section 2. Section 3 discusses the proposed
scheme, along with the design decisions with which
we were faced in implementing the algorithm within
SAS. Section 4 describes the experiments conducted
along with the observed results. We conclude the paper
in section 5 highlighting the benefits of our approach.

2. Background & Related Work
2.1. Mobile agent security

Along with flexibility in system design, agent
mobility also introduces security concerns. The
categorization of the threats plaguing mobile agents is
done based on the origination of the attack; as such we
have agent-to-host, as well as host-to-agent attacks.
Such security issues in mobile agents have been
studied and some of the proposed solutions include but
are not limited to the following:
- Code signing, access control, proof carrying code

and path histories to protect the hosts [6, 8, 18].
- Tracing, obfuscation, trusted hardware as well as

encrypted functions and data to protect the mobile
agents [2, 6, 8, 18].

Research in mobile agent security is still an open
field, and many of these approaches remain theoretical
at best. Furthermore, previous proposals suffer from
reliance on an isolated view of agent systems.

2.2. Supervised Learning

Supervised learning focuses on the ability to extract
patterns from a set of raw data whose categories are
known. Various algorithms have been introduced to
allow extraction of existing patterns in a data set. Such
algorithms include Support Vector Machines (SVM)
[7, 9], which attempt to construct and maximize a
separating hyper-plane upon mapping the data onto a
higher dimensional space. Other approaches include
neural networks, decision trees, as well as boosting [9].
Boosting has an interesting property, in the fact that
training occurs in stages. In each stage of boosting, a
weak classifier is trained using a subset of the raw
data. The set of trained classifiers yield the learning
function used to determine how to categorize future
data samples. Furthermore, due to the fact that
boosting learning function emanates from several weak

classifiers, it is easily adaptable to a distributed
environment where each weak classifier may operate
from different sources. It is this inherent ability of
boosting that we attempt to harness in this article to
address the issue of identifying malicious agents
operating across several hosts.

2.3. Related Work

Agent collaboration has been the focus of various
research efforts in recent years. Becker et al. studied
the issue of confidence determination to ascertain its
effect in collaborative agent systems [1]. The study
showed that incorrect confidence-integration may
propagate in a multi-agent system and thus change the
collaborative answers of the agents. The problem was
simplified by assuming that trust is not an issue
between the collaborating agents. Within our
approach, each of the collaborating agents is extremely
flexible in integrating confidence factors to yield a
collaborative result. Moreover, the agents do take trust
into account in determining the dependence of their
results upon other agents in the system as they
collaborate to provide distributed security.

Chen et al. [3] presented a boosting-based
hierarchical learning algorithm for experience
classification. The work was motivated by the need for
agents within a team to collaborate and learn from their
past experiences, which may differ from one agent to
another, as individual agents may only have a partial
view of the team’s environment. This learning
algorithm attempts to take advantage of boosting by
building a hierarchical framework where agents at the
lowest level may only have a partial view of the
system. Agents at the lowest level are trained using
decision stumps based only on the feature set available
to them. Agents higher up in the hierarchy are trained,
not based on their observations, but using the
classification results of the corresponding agents one
level down the hierarchy. Training in the proposed
system is hierarchical and tightly coupled amongst
agents as the classifiers are inter-dependent. The
hierarchical learning system is not suitable to address
security concerns as the system is built upon the
assumptions that the agents are members of the same
team, thus ignoring any trust issues. Furthermore, the
fact that the system is built in a hierarchical fashion
means that the final decision must originate from the
root of the structure if it is to take into account the
experience of every possible agent involved.

3. Distributed and Adaptive Security-
Monitoring through Agent Collaboration
(DASAC)

We introduce a distributed and adaptive way for
hosts within a domain to collaborate and learn to
identify malicious entities based on various
parameters. By malicious, we mean any entity that
deviates from the expected behavior of typical agents
that visit a particular host.

3.1. The DASAC Framework

The introduction of the following security scheme
stems from the realization that agents interact in a
distributed environment; hence, similarly, agent
security needs to be validated in a distributed manner.
As hosts monitor agents, data regarding the actions of
the agent can be recorded. Our work is based on the
assumption that there is a relationship, though not
clearly defined, between the actions of an agent and
the intent of such agent; whether the intent is malicious
or not. The definition of the set of actions that can help
determine whether an agent is malicious will vary from
one host to another and such actions are herein referred
to as threatening actions. The consistent fact will
remain however, that a malicious agent on one host is
highly likely to represent a threat to the security of
future hosts. Due to the variation in what constitutes a
malicious agent, any proposed learning scheme must
allow for such flexibility in identifying potential
threats.

Our approach in tackling the problem is through the
introduction of a variation of the Boosting-learning
algorithm, here forth referred to as DASAC. In order
to determine whether an agent is malicious, DASAC
relies on collaboration between the current host and
past hosts visited by the agent. The current host acts as
a decision maker; all hosts including the current one
act as base learners. We attain the required flexibility
by allowing each host in the system, as base learners,
to be trained independently and based on different
feature sets. A discussion of what feature sets could
possibly be used follows in the next section. The base
learners are trained as follows:
- Implement a binary classifier, which can be a

decision tree or any other classifier, where 1 is the
class of malicious agent and -1 otherwise.

- Train the classifier using a sample data set with
the threatening actions of the host as the various
features of each training instance.

Note that each host in the system may serve as a
base learner and as a decision maker depending upon
its contribution to the current decision-making process.
The base learners, being trained independently, may
implement various classifiers depending on the host’s
administrator.

Upon arrival of an agent to a host, one of two cases
may be true. The host may be seeing the agent for the
first time or the host may have had a personal
experience with the agent. In either of these two cases,
the host needs to determine whether to allow the agent
to execute or not. If the host had no priori experience
with the agent in question, it does not have any
pertinent information about the agent to classify it as
malicious or not using its base learner. It must thus rely
on the hosts that the agent has visited in the past. If the
agent had in the past executed on the host, the host’s
base learner can classify the agent.

Within DASAC, classification of an agent by the
decision maker is based on the following steps:
- If the host has had prior experience with the agent,

the base learner of the host is used to classify the
agent; else, the agent is assigned to the default
class of 0.

- Every host in the agent’s history are contacted and
asked to communicate to the decision maker their
classification of the agent as determined by their
respective base learners

- Using the possibly diverse experiences of other
hosts, the decision maker determines whether to
allow an agent to execute or not.

In essence, a decision maker (DM) forms a
hierarchical structure with the various base learners of
the hosts in the distributed environment to thwart
attacks. In the final steps, a DM could use various
techniques in order to reach a consensus such as
majority-vote. We however recommend a version of
weighted sum tailored to the problem at hand as

specified in Equation 1 where Ψ i represent the class to

which an agent has been assigned by the base learner

of a host. We allow Ψ i to possibly have a value of 0 in

order to ignore a base learner that does not have any
information on the agent as such may be the case for
the learner on the current host. Furthermore, i, and i

represent respectively the trust, and confidence levels
associated with each host being contacted.

The recommended version of majority vote stems
from our observations of the underlying mechanisms
in inter-human collaboration. Consider the case where
a person, A, asks a friend, B, for his/her opinion on a
puzzling question; A does not blindly believe B’s
assertion. Instead, A weighs his opinion and
confidence on the topic with B’s recommendation
based on two factors; namely, how much does A trust
B and how confident is B in his assertion. Thus, the
confidence level, in the proposed majority vote
scheme, is determined by the accuracy of the classifier
used in a host and varies between 0 and 100. The
confidence of a host is communicated to the DM along
with the classification of an agent.

The trust level, on the other hand, can be defined
statically by the system administrator of a host based
on the reputation of a particular host. We heuristically
propose trust levels to be defined as a value between 0
and 10. A default value can be specified for use
whenever a remote host’s trust information is not
available. Notice that setting the default value of trust
to 0 would effectively allow the monitoring system to
not take into account the experience/classification of
unknown hosts. As the definition of trust levels does
not carry over from one host to another, administrators
are free in setting the limits of trust values in their
systems.

If an agent is allowed to execute in the system, the
decision maker keeps track of the actions of the agent.
It can then periodically attempt to classify the agent
and thus adapt to agents that may execute malicious
code only on specific hosts. The frequency upon which
to re-classify an agent is left as an implementation
detail as it will vary upon the requirements of a host.

Although DASAC, as described, can be made to be
completely autonomous, except during training, we
understand that administrators may need to have
hands-on control on whether or not an agent should be
allowed to continue or start execution. To cope with
such a need, we introduce the notion of Security
Levels (SL) of agents on a host. The SL of an agent is
defined (Equation 2) as the ceiling of the product of its

weighted-sum, as computed in Equation 1, and the
number of security levels in the system (ß). The result
is divided by ∆, representing the maximum sum of
products multiplied by the number of cooperating
hosts. Note that ∆ is always greater than 0 as n takes
into account the current host as well.

While the SL could be calculated for all possible
value of the weighted-sum, one should note that it is
not of importance when the weighted-sum is 0 or less
as such agents have not been classified as malicious.
Using the SL, the system can be made to be semi-
autonomous, requiring human assistance once a
threshold has been reached. Agent-human interaction
can further increase the efficiency of the system as the
agent can be made to adjust its classifier based on such
interactions. Thus, DASAC may decide to use the
collected data about an agent, classify it based on its
interaction with an administrator and inserts the
information in the pool of training data. The classifier
can be periodically retrained thereby leading to an
adaptive security system.

3.2. DASAC Implementation in SAS

We have previously discussed the presence within
SAS of an agent entity, the MonitorAglet, controlling
the amount of resources being used by any particular
agent. In implementing the DASAC scheme into SAS,
the use of the MonitorAglet as the DM of a host was
an obvious option, which we adopted. The base learner
on the other hand is implemented as an independent
agent for flexibility and performance. Having the base
learner implemented as an agent allows for separate
thread of execution to handle classification and
training. Moreover, as agent entities, a host may have
multiple base learners trained on independent feature
sets; however within SAS we consider only the case
where each host has one base learner. Furthermore, in
our implementation, all base learners are built using
the classifiers from the weka data-mining library [19].
Figure 1 presents a pictorial representation of the
interaction between DMs and base learners within
SAS. In a nutshell, we extended SAS by using the
MonitorAglet as the DM of DASAC, with other agents

x 

1   i   i  ii0

n
  0

1   i   i  ii0

n
  0

0 Otherwise














Equation 1: Trust and confidence based
weighted sum

  n * max( i)  max(i)  max(i) 

SL   *


i
 

i
 

i
i  0

n






















Equation 2: Security level of an agent

acting as base learners. The implemented version of
DASAC makes use of the suggested version of
weighted sum to classify agents. Moreover we
implemented the notion of security levels, which are
used to determine whether interaction with a system
administrator is needed to dispose of an agent
classified as malicious. The details of our
implementation are provided in the remainder of this
section.

Our implementation of DASAC defines 5 distinct
security levels. The MonitorAglet is augmented with
the capability of requesting interaction from a system
administrator in order to determine the appropriate set
of actions to undertake once an agent has been
identified as a malicious entity of level 3 or lower.
Malicious agent of levels 4 and 5 are automatically
denied execution. As the choice of level 3 is an
arbitrary cutoff point, we allow room for tuning by an
administrator when the DM is first loaded onto the
host.

The set of features selected to train the base
learners, need to correlate in a manner that
differentiates malicious entities from non-malicious
ones in the system. Within SAS, agents are monitored
and based upon the number of instances running, the
MonitorAglet can allow or reject a requested action
such as cloning, dispatching etc. Such actions of agents
have been proven in SAS to be potentially detrimental
to the security of a system and thus constitute good
candidates for inclusion in the feature set. It is our
belief that the frequency at which an agent requests the
right to transition from one state to another, along with
the total amount of time spent on the host, can also
help in identifying malicious actions. Due to Java’s
sandboxing techniques, a security manager prevents
access to entities lacking the proper access rights to
local resources. As we anticipate that malicious agents
may attempt to access various resources in the hope

that the security policy in effect in the system are not
well defined, we also take into account the number of
security exceptions generated by an agent as well as
the frequency at which these exceptions occur. The
security manager resides within the Runtime layer of
SAS and in order to track the security exceptions
generated by an aglet, we introduced a listener class
through which interested parties can be notified
whenever such events occur.

To sum up, we selected the following 9 features to
train the classifiers:
- Biased Running Time of an agent
- The frequency of cloning events
- The frequency of activations of an Aglet
- The frequency of dispatch events
- The frequency of retract events
- The frequency of arrival events
- The frequency of security access requests
- The frequency of security access grants
- The frequency of security access denials

Once the feature set has been selected, we trained
the classifiers in order to extract data patterns that may
help classify an agent based on its behavior. We used a
system consisting of 8 hosts. For simplicity, hosts 1
thru 4 have different classifiers, namely, an alternating
decision tree with 0 boosting iterations, a fast decision
tree learner, a decision stump and a naïve Bayes
classifier. The remaining hosts implement the
alternating decision tree as well but with 3 boosting
iterations. Moreover, the first four hosts have different
trust levels, with all others having the same trust levels.

Due to the fact that training data for classifiers are
not readily available, we trained our classifiers using a
data set generated by tracking the features of interest
during actual runs of several agent-based applications
such as MAMDAS [14] and the Private Information
Retrieval prototype [13], along with the agents that
were used in assessing the security of SAS [13]. The
choice of applications used to collect the data was
based not only on their availability, but also due to the
fact that their classification is known a priori, as
discussed in SAS, and encompasses both classes of
agents of interest to our work. The MonitorAglet
tracks every event generated by agents in the system
and construct a data sample for the corresponding
agent. The constructed sample consists of the features
that we identified as having the potential to help
identify malicious entities.

The generated data set consists of over 3000
samples, manually classified, of which, roughly 15% is
used to train each classifier. Each sample represents
the set of features tracked by the MonitorAglet during
a run of the agent on the host. The classifiers used the
remainder of the data set for accuracy assessment. The

Figure 1: Distributed Interaction between DMs
and base learners

accuracy of each host classifier is used as the
confidence level of the host in question, as suggested
by DASAC, in all our experiments.

Figure 2 presents a pictorial view of the accuracy
rate of the hosts in the system over multiple runs; note
that host 5 really depicts the accuracy rate of hosts 5
thru 8. The accuracy of hosts shown in Figure 2 was
determined based on the ability of the host’s classifier
to properly classify the remainder of the 3000 samples
in the data set not used for training. During each run of
the experiment, a random set is selected to train the
classifiers, hence the slight variation in hosts’ accuracy
rate over multiple runs.

4. Experimental Analysis

In evaluating the performance of DASAC, we were
mainly concerned with two issues. The first one is the
overall classification accuracy of the system compared
to a host’s local classifier, and the second is the impact
of trust level on the accuracy.

We chose the first host in the system (Host1 from
Figure 2) as the local classifier against which DASAC
will be compared. Our choice is based on the fact that
host 1 has a performance slightly better than random
guessing. As such, our goal is to analyze how DASAC
can help improve the performance of a host through
collaboration. We thus proceeded to launching the
agent applications used in training the system
classifiers. We also introduced a PortScannerAglet that
repeatedly attempts to connect to numerous ports in the
system whether it has access to conduct such actions or
not. Furthermore, we manually created, dispatched,
and retracted the CirculateAglet, WebServerAglet, and
HelloAglet that comes with the Aglet framework.
Lastly, we created and used a new version of the
WebServerAglet that migrates to hosts and attempts to
set up a server on random ports, restricted or not,

repeatedly. Our version of the WebServerAglet
migrates to a new host, once it has been denied access
to ports over 10 times. Our reasoning behind the
introduction of new Aglets that were not used during
the training phase is to gain insights into the ability of
our classifiers to perform well even in the presence of
previously unseen behaviors.

The DM of each host dynamically classifies agents
to determine whether or not they are malicious. We
evaluate the system based on the accuracy at which the
local classifier and DASAC recognize malicious
agents. We also tracked the best accuracy recorded in
the system and computed the average accuracy of the
hosts including the first one. While the confidence
levels used in the experiments were described in
section 3.2, the trust levels, on the other hand, were
assigned randomly. The local classifier is assigned a
trust level of 9, close to the maximum of 10, to reflect
the trust that we expect administrators to have in their
own systems.

Figure 3 depicts the measured accuracy of DASAC
compared to that of Host1’s classifier, the best
accuracy rate measured in the system along with the
average of host’s accuracy rate. On average, DASAC’s
performance seems to lie between the average
accuracy of the involved hosts and that of the most
accurate classifier. The fluctuations in the accuracy
rate measured are due to the fact that the hosts are
trained for every experimental run on a random
sample. Thus, their performance is slightly dependent
on the sample used during training.

While DASAC generally outperforms the worst
classifier in the system, it matched the first host’s
performance during the first run of the experiment.
The only reasonable explanation for such a poor
performance by DASAC stems from the trust levels
used during the first experiment. We noted that the
total trust levels of hosts 2 thru 8 varied from one

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4

Experimental Run

Host1

Host2

Host3

Host4

Host5

Figure 2: Accuracy of multiple hosts

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5

Experimental Run
Host 1 Accuracy

DASAC Accuracy

Host 5 Accuracy

Average Hosts Accuracy

Figure 3: Local vs. DASAC accuracy

experiment to the next as follows: 5, 16, 23, 27, and
36. When the trust levels of the other hosts are low
compared to that of the local host, DASAC’s
performance seems to be more dependent on that of the
local classifier. This brings us to the second set of
experiments that were carried out to further investigate
the effect of trust levels on DASAC. During the
second experiment, we kept the trust levels of all hosts,
including host 1, identical. The trust levels were
however varied from one experimental run to the next
starting at 0 up to 10.

The results of the second experiment are presented
in Figure 4 and shows that DASAC still outperforms
the average accuracy rate computed. The experiment
revealed two crucial points, the first being that all the
classifiers in the system can indeed outperform
DASAC, as is the case when the trust levels are all 0.
The explanation behind such an occurrence is due to
the fact that DASAC will classify all samples as 0,
which is in effect non-malicious. Thus, DASAC will
fail to classify any malicious agents possibly degrading
to an accuracy rate of 0.

The second interesting factor revealed by the
experiment is the fact that DASAC’s performance
seems to quickly become dependent upon the accuracy
rates of the best classifiers in the system. This is
explained by the fact that DASAC is in effect designed
to that end in order to take advantage of the strength
and experience of other hosts in the system. Once the
trust levels are identical for all hosts, the only
determining factor in classifying an agent becomes the
confidence of hosts. The more confident hosts have a
bigger weight on the system’s classification of an
entity.

5. Conclusion

This article has introduced a novel distributed and
adaptive security-monitoring framework achieved
through agent collaboration across multiple hosts. To

the best of our knowledge, this work represents the
first in its kind to attack agent security through
collaboration between the hosts in the system. While
we have only implemented DASAC within SAS at this
point, it can be easily applied to any agent platform.
The framework, as we have shown, builds on the idea
of boosting to allow host protection by classifying
agents based on their reputation. The system is flexible
enough to support the incorporation of various
classifiers that may be trained using independent
variables, as the hosts do not communicate their
feature sets to each other. Moreover, DASAC
introduces the notion of security levels to support
human-agent interaction in order to render the system
even more flexible and robust.

6. References
[1] R. Becker, D. D. Corkill, “Determining Confidence
When Integrating Contributions from Multiple Agents” In
Sixth International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 2007), Honolulu,
Hawaii, May 2007
[2] E. Bierman, E. Cloete, “Classification of Malicious Host
Threats in Mobile Agent Computing.” In Proceedings of
SAICSIT, ,2002. pp. 141-148
[3] P.-C. Chen, X. Fan, S. Zhu, J. Yen. “Boosting-based
learning agents for experience classification” In Proceedings
of the 2006 IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, p. 385-388, 2006.
[4] J. Claessens, B. Preneel, J. Vandewalle, “(How) Can
Mobile Agents Do Secure Electronic Transactions on
Untrusted Hosts? A Survey of the Security Issues and the
Current Solutions” In ACM Transactions on Internet
Technology, Vol. 3 No. 1, 2003, pp. 28-48
[5] W. Diffie, M. E. Hellman, “New Directions in
Cryptography” In IEEE Transactions on Information Theory,
vol. IT-22, 1976, pp. 644-654
[6] O. Esparz, M. Fernandez, M. Soriano, “Protecting mobile
agents by using traceability techniques”. In IEEE © 2003.
[7] Y. Freund. Boosting a weak learning algorithm by
majority. In Information and Computation, volume
121, pages 256-285, 1995
[8] M. S. Greenberg, J. C. Byington, T. Holding, D. G.
Harper “Mobile Agents and Security” In IEEE
Communications Magazine, 1998
[9] T. Hastie, R. Tibshirani, J. H. Friedman. The
Elements of Statistical Learning. Springer, 2001
[10] K. E. B. Hickman “Secure Socket Library” Netscape
Communications Corp., Internet Draft RFC (1995)
[11] W. Jansen, T. Karygiannis, “NIST Special Publication
800-19 – Mobile Agent Security” National Institute of
Standards and Technology, 2000.
[12] JCE Internet Reference Guide. (n.d). Retrieved
December 5th 2006, from
http://java.sun.com/javase/6/docs/technotes/guides/security/c
rypto/CryptoSpec.html

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10

Trust Levels of HostsHost 1 Accuracy

DASAC Accuracy

Host 5 Accuracy

Average Hosts Accuracy

Figure 4: Effect of trust levels on DASAC
accuracy

[13] E. Jean, Y. Jiao, A.R. Hurson, and T.E. Potok, "SAS: A
secure aglet server," In Proc. of Computer Security
Conference 2007,
[14] Y. Jiao, A. R. Hurson, “Application of mobile agents in
mobile data access systems: A prototype” In Journal of
Database Management, 2004, pp. 1-24
[15] JSSE Internet Reference Guide. (n.d). Retrieved
December 5th 2006, from
http://java.sun.com/javase/6/docs/technotes/guides/security/j
sse/JSSERefGuide.html
[16] D. B. Lange, M. Oshima. Programming and deploying
Java mobile agents with Aglets. Addison-Wesley, 1998.
[17] R. E. Schapire. The strength of weak learnability.
Machine Learning, 5(2):197-227, 1990
[18] C. F. Tschudin. “Mobile Agent Security” In Intelligent
Information Agents: Agent-Based Information Discovery and
Management on the Internet, M. Klusch, Ed., Springer-
Verlagu, New York, 1999, Chapter 18 pp. 431–446.
[19] I. H. Witten, E. Frank. Data Mining: Practical machine
learning tools and techniques 2nd Edition, Morgan
Kaufmann, San Francisco, 2005

ACKNOWLEDGMENTS
The National Science Foundation under the contract IIS-
0324835 in part has supported this work.

Notice: This manuscript has been authored by UT-Battelle,
LLC, under contract DE-AC05-00OR22725 with the US
Department of Energy. The United States Government
retains and the publisher, by accepting the article for
publication, acknowledges that the United States
Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for United
States Government purposes.

