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Summary. This report presents a pilot study of an integration of particle swarm
algorithm, social knowledge adaptation and multi-agent approaches for modeling the
collective search behavior of self-organized groups in an adaptive environment. The
objective of this research is to apply the particle swarm metaphor as a model of social
group adaptation for the dynamic environment and to provide insight and under-
standing of social group knowledge discovering and strategic searching. A new adap-
tive environment model, which dynamically reacts to the group collective searching
behaviors, is proposed in this research. The simulations in the research indicate that
effective communication between groups is not the necessary requirement for whole
self-organized groups to achieve the efficient collective searching behavior in the
adaptive environment. One possible application of this research is building scientific
understanding of the insurgency in the count-Insurgent warfare.

1 Introduction

The real world is a complex system. The self-organized social groups (human
community or animal colony) in the complex system search for a high profit
strategy as well as adapt to the changing environment. At the same time, the
changes of the environment will be impacted by the collective behaviors that
emerge from the social groups when these collective behaviors are effective
enough to alter the environment. The central control model and the hierar-
chical model are no longer suitable to provide insight and understanding of
the self-organized groups’ knowledge discovering and strategic searching in
such complex system.

The research of some social insects, such as ants, indicate that these so-
cial insects have a new kind of social collective behavior model to help them
quickly respond and adapt to the dynamic environment and survive for mil-
lions of years. Swarm Intelligence is the research field that attempts to design
computational algorithms or distributed problem-solving devices inspired by
the collective behavior of social insect colonies [1]. Compared to the tradi-
tional algorithms, the Swarm Intelligence algorithms are flexible, robust, de-
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centralized, and self-organized. Swarm Intelligence provides a basis to explore
collective (or distributed) problem solving without centralized control or the
provision of a global model. Particle swarm algorithm [2] is one of the major
research results from Swarm Intelligence. Since 2004, researchers have success-
fully applied the particle swarm model in the simulation of the social behavior
in animals [5, 6] and strategic adaptation in organizations [6, 7]. However, in
terms of self-organized group’s collective strategy searching model for dynamic
and adaptive environment, there does not appear to be any mature or widely
used methodology.

In this research, a modified adaptive particle swarm model is used to model
the self-organized group’s collective strategic searching behavior in an adap-
tive environment. Different from randomly changing environment model used
in many research, a new adaptive environment model, which dynamically re-
acts to the group’s collective searching behaviors, is proposed in this research.
The objective of this research is to apply the particle swarm metaphor as a
model of human social group adaptation for the dynamic environment and
to provide insight and understanding of social group’s knowledge discovering
and strategic searching in changing environment.

This paper is organized as follows: Section 2 provides an introduction to
the canonical particle swarm optimization algorithm. Section 3 describes the
particle swarm strategic searching behavior model, the dynamic and adaptive
strategy profit landscape model and a modified adaptive particle swarm al-
gorithm for dynamic environment. Section 4 explains the implementation of
self-organized group’s collective strategic searching simulation. Result discus-
sion and conclusion are presented in Section 5 and 6.

2 Particle Swarm Algorithm

The particle swarm algorithm was originally developed by Eberhart and
Kennedy in 1995 [2], inspired by the social behavior of the bird flock and
social interactions of the human society. In the particle swarm algorithm,
birds in a flock are symbolically represented as particles. These particles can
be considered as simple agents ”flying” through a problem space.

The velocity and direction of each particle moving along each dimension
of the problem space are altered at each generation of movement. It is the
particle’s personal experience combined with its neighbors’ experience that
influences the movement of each particle through a problem space. For every
generation, the particle’s new location is computed by adding the particle’s
current velocity V − vector to its location X − vector. Mathematically, given
a multi-dimensional problem space, the ith particle changes its velocity and
location according to the following equations [4]:

vid = w × (vid + c1 × rand1 × (pid − xid) + c2 × rand2 × (pgd − xid)) (1)
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xid = xid + vid (2)

where, pid is the location of the particle where it experiences the best fitness
value; pgd is the location of the particle experienced the highest best fitness
value in the whole population; xid is the particle current location; c1 and c2

are two positive acceleration constants; d is the number of dimensions of the
problem space; rand1, rand2 are random values in the range of (0, 1). w is
called the constriction coefficient [8, 9].

Eq.1 requires each particle to record its current coordinate xid, its velocity
Vid that indicates the speed of its movement along the dimensions in a prob-
lem space, its personal best fitness value location vector Pid and the whole
population’s best fitness value location vector Pgd. The best fitness values are
updated at each generation based on Eq.3, where the symbol f denotes the
fitness function; Pi(t) denotes the best fitness coordination; and t denotes the
generation step.

f(Pi(t + 1)) =
{

f(Pi(t)), if f(Xi(t + 1)) ≤ f(Pi(t))
f(Xi(t + 1)), if f(Xi(t + 1)) > f(Pi(t))

(3)

The Pid and Pgd and their coordinate fitness values f(Pid) and f(Pgd) can
be considered as each individual particle’s experience or knowledge and Eq.3
is the particle’s knowledge updating mechanism.

3 Particle Swarm Based Collective Searching Behavior
Model

In this proposed particle swarm based collective searching model, different
self-organized group members seek efficient strategy configurations that can
generate the highest profit in a dynamic and adaptive environment. The en-
vironment can be modeled as an adaptive profit landscape. The landscape
will dynamically change as the group members search for the highest profit
strategy configuration. In addition, the change of the landscape is impacted
by the location of the group members. This demands that the groups not only
find a highly profitable strategy in a short time, but also track the trajectory
of the profitable strategy in the dynamic environment. The fitness value for
assessing the performance of the self-organized groups’ strategy searching is
the summary value of each group member’s profit in each simulation iteration
instead of the highest profit one single group member can find. The group
members do not have any prior-knowledge about the profit landscape. The
objective of each group member is to find the strategy in the landscape that
can generate greatest profit. The particle swarm based collective searching
behavior model includes two important elements: the dynamic and adaptive
profit landscape and the individual behavior model integrated with adaptive
particle swarm algorithm.
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3.1 Dynamic and Adaptive Fitness Landscape

In this model, the strategic searching in the dynamic and adaptive environ-
ment is considered as an attempt to uncover and track the highest fitness
values on a dynamic fitness landscape. To simulate the movement of the
strategies and the dynamic change of the fitness value of different strategic
configurations, a test function generator, DF1, proposed by Morrison and De
Jong [10], is used to construct the dynamic landscape. This DF1 test function
generator has been widely used as the generator of dynamic environments
[11, 12, 13, 14]. The DF1 generator is capable of generating a given number
of cone shape peaks in a given number of dimensions. For a two dimensional
space, the fitness value evaluation function in DF1 is defined as:

f(X,Y ) = MAX[Hi −Ri ×
√

(X − xi)2 + (Y − yi)2]; (i = 1, ....N) (4)

where N denotes the number of peaks in the environment. The (xi, yi) repre-
sents each cone’s location. Ri and Hi represent the cone’s height and slope.

The dynamic environment is simulated with the movement of the cones
and the change of the height of the cone-shaped peaks. Different movement
functions generate different types of dynamic environments. In this research,
the environment change rate is controlled through the logic function [10]:

Yi = A× Yi−1 × (1− Yi−1) (5)

where A is a constant and Yi is the value at the time-step i. The Y value pro-
duced on each time-step will be used to control the changing step sizes of the
dynamic environment. In this research, the dynamic environment is simulated
by the movement of the cone’s location (xi, yi). The Y value represents the
moving velocity of the cone location.

In real-world applications, the evaluated fitness value cannot always be
calculated precisely. Most of the time, the fitness value will be polluted by
some degree of noise. To simulate this kind of noise pollution in the fitness
evaluation, a noise polluted fitness value is generated with the following ap-
proach. At each iteration, the fitness value f(x) can only be obtained in the
form of fn(x), where fn(x) is the approximation of f(x) and contains a small
amount of noise n. The function can be represented as [14]:

fn(x) = f(x)× (1 + η); η ∼ N(0, σ2) (6)

where η illustrate the noise and is a Gaussian distributed random variable
with zero mean and variance σ2. Therefore, at each time, the particle will
get a fn(x) evaluation value instead of f(x). Another dynamic mechanism
of the fitness landscape is the fitness value of the strategic configuration will
gradually decrease with an increasing number of the searching group members
that adopt similar strategic configurations.

fi(x, y) = fi−1(x, y)× (
1

e(N−1)
) (7)
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where f is the landscape fitness value of strategic configuration (x, y) at the
iteration i. N denotes the number of group member that adopts similar strate-
gic configurations.

3.2 The individual behavior model

The particle swarm algorithm is used to control the group member’s search
behavior in the fitness landscape. Under the particle swarm metaphor, each
member is represented as a search particle. The particle moves through the
profit landscape discussed in the previous section to search for a function op-
timum. Each particle has two associated properties, a current strategic con-
figuration position x in the profit landscape and a velocity v. Each particle
has a memory of its best strategy configuration location (pbest) where the
strategy configuration can generate the highest fitness value, which is equal
to the highest benefit gained by the individual. Each particle also knows the
global best location (gbest) found by all other neighbor particles that belong
to the same group. The gbest of different groups will be exchanged between
different groups.

3.3 Distributed adaptive particle swarm algorithm for dynamic
environment

In canonical particle swarm algorithm, particles’ knowledge will not be up-
dated until the particle encounters a new vector location with a higher fitness
value than the value currently stored in its memory. However, in the dynamic
environment discussed in the previous section, the fitness value of each point
in the profit landscape may change over time. The strategic configuration
location vector with the highest fitness value ever found by a specific parti-
cle may not have the highest fitness value after several iterations. It requires
the particle to renew its memory whenever the real environment status does
not match the particle’s memorized knowledge. However, the traditional par-
ticle swarm algorithm lacks an updating mechanism to monitor the change
of the environment and renew the particles’ memory when the environment
has changed. As a result, the particle continually uses the outdated experi-
ence/knowledge to direct its search, which inhibits the particle from following
the moving path of the current optimal solution and eventually, causes the
particle to be easily trapped in the region of the former optimal solution.

In this research, we adopt a modified particle swarm algorithm [15], the
distributed adaptive particle swarm algorithm approach as each group mem-
ber’s searching behavior. In the distributed adaptive particle swarm algorithm
approach, there is no specially designed particle to monitor the change of the
environment. Like the traditional particle swarm algorithm, each particle uses
the Eq.1 to determine its next velocity. The only difference is each particle will
compare the fitness value of its current location with that of its previous loca-
tion. If the current fitness value doesn’t have any improvement compared to
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the previous value, the particle will use Eq.8 for the fitness value update. Eq.8
is slightly different compare to the traditional fitness value update function
in Eq.3.

f(Pi(t + 1)) =
{

f(pi(t))× ρ, if f(Xi(t + 1)) ≤ f(Pi(t))× ρ
f(Xi(t + 1)), if f(Xi(t + 1)) > f(Pi(t))× ρ

(8)

In Eq.8, a new notion, the evaporation constant ρ, is introduced. ρ has a
value between 0 and 1. The personal fitness value that is stored in each parti-
cle’s memory and the global fitness value of the particle swarm will gradually
evaporate (decrease) at the rate of the evaporation constant ρ over time.

If the particle continuously fails to improve its current fitness value by
using its previous search experience, the particle’s personal best fitness value
as well as the global best fitness value will gradually decrease. Eventually, the
personal and global best fitness value will be lower than the fitness value of
the particle’s current location and the best fitness value will be replaced by
the particle’s current fitness value. Although all particles have the same evap-
oration constant ρ, each particle’s updating frequency may not be the same.
The updating frequency depends on the particle’s previous personal best fit-
ness value f(P ) and the current fitness value f(X) that the particle acquired.
The particle will update its best fitness value more frequently by using the
current fitness value when the f(P ) is lower and the f(X) is higher. However,
when the f(P ) is higher and the f(X) is lower in a changing environment,
it indicates the particle’s current location is far away from the current opti-
mal solution compared to the distance between the optimal solution and the
best fitness value’s position stored in the particle’s memory. Usually the new
environment (after changing) is closely related to the previous environment
from which it evolves. It would be beneficial to use the knowledge/experience
about the previous search space to help search for the new optimal. In this
situation, the particle will keep the best fitness value in its memory until the
best fitness value becomes obsolete. The fitness value update equation enables
each particle to self-adapt to the changing environment.

4 Agent Based Collective Searching Simulation

The implementations of the particle swarm collective searching behavior
model and the adaptive profit landscape model simulations are carried out
under the Netlogo agent modeling environment [16]. Each agent in the Net-
logo environment represents one particle in the model. The agents use Eq.8
to update their best fitness value. There are 300 agents randomly distributed
in an environment that consists of a 100x100 rectangular grid. The grid rep-
resents all the possible strategic configurations the agent may adopt for their
profit. A dynamic profit landscape is generated as discussed in section 3.1
and mirrored on the grid. The two dimensional visual grid is shown in Fig.2.
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Eight white circuits represent the maximum profit values. The brighter the
white circuit, the higher the profit value is. The agents are represented as
the color dots in the grid. Different colors indicate different groups of agents.
The searching of highly profitable strategic configuration is presented as the
movement of agent in the two dimensional grid. The movement of each agent
is controlled by Eq.1 and Eq.2, in which c1 and c2 are set to 1.49, Vmax is
set to 5 and the w value is set to 0.72 as recommended in canonical particle
swarm algorithm [8].

Fig. 1. The initial environment and agent groups

In the canonical particle swarm algorithm, each particle is fully aware of
what happens to its neighbors. When one particle discovers a related good
solution in the search landscape, all particles which are neighbors of this par-
ticle will be affected and change their moving direction in the next iteration.
However, this is not true in the real world. The information exchange between
different self-organized groups is not as efficient as that within the same group.
Because of the dynamic topology or competition, some groups may not be able
to share their newest high profit strategy to other agent groups. The informa-
tion about other groups is usually non-accurate or delayed.

In this simulation, it is assumed that agents belonging to the same group
can exchange information without any restriction. But the information ex-
changed between different groups will be delayed for a pre-defined number of
time-steps and some noise will be added to pollute the value of the information
to reduce the information’s accuracy. The delayed time-step for information
exchange between agent groups is pre-set as 20 time-steps. There is a 20% pos-
sibility that the information, including the location of the best fitness value
and the fitness value itself, is incorrect. Two different agent group topology
scenarios, scenario a and scenario b, are simulated in this study. In scenario
a, 300 agents belong to one single group. In scenario b, the 300 agents are
evenly distributed into 20 different groups with 15 agents in each group. Each
simulation will be run for 200 iterations.
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5 Results

The final distribution maps after 200 iterations are presented in Fig.2. As
shown in Fig.2(a), for scenario a, all agents belong to the same group. These
agents can freely exchange information about their strategic configuration and
strategy performance. Every agent wants to adopt the strategic configuration
that can generate the highest profit (fitness value). This will cause all agents
to swarm around the highest profit peak in the profit landscape. However,
because of the dynamic adaptation character of the landscape, the fitness
value of the strategies around the highest peak will gradually reduce when
the number of agents around it increases. In this scenario, all agents can
find the highest fitness value strategy in a short time and nearly all agents
will swarm around the trajectory of the highest fitness value in the dynamic
environment.

For scenario b, as shown in Fig.2(b), limited communication between agent
groups causes some agents to not receive the newest information about the
best strategy configuration that other agents have found. Consequently, agents
are distributed relatively evenly around different fitness peaks.

Fig. 2. The collective searching results after 200 iterations for (a) 1 group, 300
agents scenario, (b) 20 groups, 15 agents per group scenario

In each simulation, the summary of profit (fitness value) of all agents at
each iteration is recorded and used as the evaluation of the performance of
the whole agent groups. The results are shown as profit (fitness value) vs
time-steps chart in Fig.3. Initially, scenario a has a higher fitness value than
the scenario b, because in scenario a, with the help of distributed adaptive
particle swarm model, all agents can quickly aggregate around the highest
peak in the strategic configuration profit landscape. However, the fitness value
in the landscape will adaptively change according to Eq.4. The congregation
of the agents around the highest fitness value will cause a quick decrease of
the fitness value of the nearby landscape and eventually cause the summary
of profit to quickly reduce. As shown in Fig.3, the profit of scenario a reduces
quickly from the peak and remains low until around 200 iterations.

For scenario b, the even distribution of agents around all fitness peaks
makes the fitness value of the nearby landscape not decrease as quickly as
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Fig. 3. Comparison of the agents summary profit value at each iteration for scenario
(a) 1 group, 300 agents and (b) 20 groups, 15 agents per group.

scenario a and maintains a higher group fitness value than scenario a in nearly
the whole simulation. The approach of scenario b also helps agents to quickly
track the movement of the fitness peaks.

6 Conclusion

Most reported applications of the optimization algorithms and searching be-
havior models only discuss the scenarios in the static environment or the
randomly changed environment. The performance evaluation of various ap-
proaches is mainly based on how fast an approach can find the optimal point
in the benchmark problems. However, the real world is rarely static and its
changes are not random. Most of time, the changes in the world are impacted
by the collective actions of the social groups in the world. In this paper, a
modified particle swarm strategic searching model is developed to simulate
the complex interactions and the collective strategic searching of the self-
organized groups in an adaptive environment.

We construct a novel agent based simulation model to examine the col-
lective searching behavior of different group form scenarios. Results from the
simulation have shown that effective communication is not the necessary re-
quirements for self organized groups to attain higher profit in a dynamic and
adaptive environment. Further research will discover the impact of different
group architectures on the total groups’ fitness value. An application that
integrating the particle swarm model in an agent-based self-organizing social
dynamic model will be implemented for simulating an insurgent group’s social
interactions and adaptations in a complex insurgency warfare system.
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