
  

  

Abstract—  Various computer-assisted technologies have 
been developed to assist radiologists in detecting cancer; 
however, the algorithms still lack high degrees of sensitivity 
and specificity, and must undergo machine learning against a 
training set with known pathologies in order to further refine 
the algorithms with higher validity of truth.  This work 
describes an approach to learning cue phrase patterns in 
radiology reports that utilizes a genetic algorithm (GA) as the 
learning method.  The approach described here successfully 
learned cue phrase patterns for two distinct classes of 
radiology reports.  These patterns can then be used as a basis 
for automatically categorizing, clustering, or retrieving 
relevant data for the user. 

I. INTRODUCTION 
n mammography, much effort has been expended to 
characterize findings in the radiology reports.  Various 

computer-assisted technologies have been developed to 
assist radiologists in detecting cancer; however, the 
algorithms still lack high degrees of sensitivity and 
specificity, and must undergo machine learning against a 
training set with known pathologies in order to further 
refine the algorithms with higher validity of truth.  In a 
large database of reports and corresponding images, 
automated tools are needed just to determine which data to 
include in the training set.  Validation of these data is 
another issue.  Radiologists disagree with each other over 
the characteristics and features of what constitutes a normal 
mammogram and the terminology to use in the associated 
radiology report.  Abnormal reports follow the lexicon 
established by the American College of radiology Breast 
Imaging Reporting and Data System (Bi-RADS), but even 
within these reports, there is a high degree of text 
variability and interpretation of semantics.  The focus has 
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been on classifying abnormal or suspicious reports, but even 
this process needs further layers of clustering and gradation, 
so that individual lesions can be more effectively classified. 

The knowledge to be gained by extracting and integrating 
meaningful information from radiology reports will have a 
far-reaching benefit, in terms of the refinement of the 
classifications of various findings within the reports.  In the 
near-term, the overall goal of this work is to accurately 
identify abnormal radiology reports amid a massive 
collection of reports.  The challenge in achieving this goal 
lies in the use of natural language to describe the patient’s 
condition. 

Therefore, what is needed is an automated means of 
learning the characteristic cue phrase patterns of the natural 
language used in the radiology reports and using those 
learned patterns as a basis for automatically categorizing, 
clustering, or retrieving relevant data for the user.  This 
paper describes preliminary work being performed to 
address the learning aspect of this approach.  Section 2 will 
discuss the background of the radiology reports being 
addressed by this work. Section 3 will describe the learning 
approach, while section 4 discusses results.  Section 5 will 
discuss future work. 

II. BACKGROUND 
This work focuses on the language domain of 

mammography reports.  In the report, the radiologist 
describes the features or structures that they see or do not 
see in the image.  Essentially, this report is meta-data that is 
written by a human subject matter expert about the image.  
In order to effectively train a computer-assisted detection 
(CAD) system, these reports could be mined and used as 
supplemental meta-data.  Unfortunately, little work has 
been done to utilize and maximize the knowledge potential 
that exists in these reports. 

In this preliminary study, unstructured mammography 
reports were used.  These reports represented 12,809 
patients studied over a 5-year period from 1988 to 1993.  
There are 61,064 actual reports in this set.  Each report 
generally consists of two sections.  The first section 
describes what features the radiologist does or does not see 
in the image.  The second section provides the radiologist’s 
formal opinion as to whether or not there are suspicious 
features that may suggest malignancy (i.e., or the possibility 
that the patient has cancer).  The set of reports also includes 
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a number of reports that simply state that the patient 
canceled their appointment. 

To provide a better perspective of the challenge of mining 
these reports, consider the following question.  Given a 
database of these reports, how does one retrieve those 
reports that represent abnormalities in the patient?  In 
mammography, most patient reports will represent 
“normal” conditions in the patient.  Consequently, the 
reports with “abnormal” conditions are rare (defining the 
difference between what is “normal” and “abnormal” is 
beyond the scope of this paper).  

The main problem of trying to find abnormal reports lies 
in the language that is used in mammograms. As discussed 
in [5], abnormal reports tend to have a richer vocabulary 
than normal reports.  In addition, normal reports tend to 
have a higher number of “negation” phrases.  These are 
phrases that begin with the word “no” such as in the phrase 
“no findings suggestive of malignancy.” These negation 
phrases generally occur in normal reports. 

The goal, then, is to develop an automated approach to 
learning the skip bigrams (or s-grams) of cue phrases in the 
mammography language that sufficiently characterize the 
reports such that information retrieval becomes both more 
accurate and simplistic while, at the same time, not being 
computationally intensive [1],[2],[6].  S-grams are word 
pairs in their respective sentence order that allow for 
arbitrary gaps between the words.  For a phrase such as “no 
findings suggestive of malignancy”, an s-grams would be 
the words “no” and “malignancy.”  This s-gram uniquely 
identifies a particular semantic in the language of 
mammography reports and enables the identification of all 
possible variations of such phrases.  Higher-level patterns 
may then be formed from these s-grams. 

The work here describes a possible approach toward this 
goal of automatically learning s-grams that can provide 
meaningful retrieval on domain-specific data and the results 
achieved thus far. 

III. LEARNING APPROACH 
As discussed in section 2 and in [5], mammography 

reports exhibit two characteristics.  First, abnormal reports 
tend to have a wider variation in the language that is used.  
Consequently, these reports tend not to cluster with other 
reports.  The second characteristic is that normal reports use 
more negation phrases than abnormal reports.  It is these 
two characteristics that we seek to exploit in this approach. 

To exploit the first characteristic, an enhancement of the 
maximum variation sampling technique [5] is developed.  
This technique is implemented via a genetic algorithm 
(MVS-GA) and is discussed in the next section along with 
the enhancements.  In addition, the work described here 
differs from [5] in that the MVS-GA is used to learn 
common phrase patterns among diverse documents and not 

explicitly for sampling.  To exploit the second 
characteristic, the MVS-GA is augmented with a simple 
memory that stores the common phrase patterns of samples 
that failed to survive in the MVS-GA. This will be 
discussed later. 

A. Learning from Maximum Variation Sampling 
Maximum variation sampling is a nonprobability-based 

sampling.  This form of sampling is based on purposeful 
selection, rather than random selection.  Since abnormal 
mammography reports are not as common as normal ones, 
random sampling would make it difficult to find them.  
Within nonprobability-based sampling, there are several 
categories of sampling [4], one of which is maximum 
variation sampling (MVS) [4].  This particular sampling 
method seeks to identify a particular sample of data that 
will represent the diverse data points in a data set.  In this 
case, the diverse data points will represent abnormal 
mammograms.  The MVS is naturally implemented as a 
genetic algorithm (MVS-GA). 

Before applying a GA to the analysis of mammography 
reports, the reports must be prepared using standard 
information retrieval techniques.  First, reports are 
processed by removing stop words and applying the Porter 
stemming algorithm [3],[7],[8].  Once this has been done, 
the articles are then transformed into a vector-space model 
(VSM) [9],[10].  In a VSM, a frequency vector of word and 
phrase occurrences within each report can represent each 
report.  Once vector-space models have been created, the 
GA can then be applied. 

Two of the most critical components of implementing a 
GA are the encoding of the problem domain into the GA 
population and the fitness function to be used for evaluating 
individuals in the population.  To encode the data for this 
particular problem domain, each individual in the 
population represents one sample of size N.  Each 
individual consists of N genes where each gene represents 
one radiology report (each report is given a unique numeric 
identifier) in the sample.  For example, if the sample size 

were 10, each individual would 
represent one possible sample 

and consist of 10 genes that represent 10 different reports.  
This representation is shown in the following figure. 

 
 

Fig. 1.  Genetic representation of each individual 
 

The fitness function evaluates each individual according 

Document 1 Document 2 … Document N 

Sample Size is N 

Gene 1 Gene 2 … Gene N 



  

to some predefined set of constraints or goals.  In this 
particular application, the goal for the fitness function was 
to achieve a sample that represents the maximum variation 
of the data set without applying clustering techniques or 
without prior knowledge of the population categories.  To 
measure the variation (or diversity) of our samples, the 
summation of the similarity between the vector-space 
models of each document (or gene) in the sample is 
calculated as shown in the following equation. 

The data set for this current work utilizes a set of 61,064 
reports.  Within this data are numerous reports that simply 
state that the patient canceled their appointment.  These 
reports are very small in length and are exceptionally 
distinct from all other reports (similarity values 
approaching zero).  Unfortunately, the MVS-GA from [5] 
gravitates toward these cancellation reports as the best 
solution for a maximum variation sample. 

In an effort to effectively characterize the phrase patterns 
of the mammography reports, it is necessary to examine 
reports that are longer in length, so that more language can 
be examined for patterns.  In addition, abnormal reports 
tend to be longer in length than normal reports since the 
radiologist is describing the abnormalities in more detail.  
Consequently, the fitness function of the MVS-GA was 
enhanced to incorporate penalty functions as shown in 
equations 1 – 3. 

 

Fit (i) = α j + βk + Sim(Gi j ,Gi k )
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In Eq. 1, the Similarity function calculates the distance 

between the vector space models of gene j and k of the 
individual i.  This distance value ranges between 0 and 1 
with 1 indicating that the two reports are identical and 0 
indicating that they are completely different in terms of the 
words used in that report.  Therefore, in order to find a 
sample with the maximum variation, Eq. 1 must be 
minimized (i.e., lower fitness values are better).  In this 
fitness function, there will be (N2 – N) / 2 comparisons for 
each sample to be evaluated. 

The penalty functions are incorporated into the fitness 
function in order to penalize individuals in the MVS-GA 
based on the length of the documents they represent.  
Shorter documents receive higher penalties while longer 
documents receive much lower penalties. The penalty 
functions also return values that are between 0 and 1, 
inclusive.  As a result of the penalty functions, the 

cancellation reports will receive the highest fitness values, 
while lengthy, abnormal reports will receive the lowest 
fitness values. 

After the MVS-GA is executed, the end result is a best 
sample of mammography reports that are as diverse from 
each other as possible.  Once this sample is achieved, then 
phrases are extracted from each document in the sample.  
For each phrase in the document, s-grams are extracted.  
Next, the s-grams are counted across the sample of 
documents.  S-grams that are common across the sample 
will have higher frequency counts while s-grams with a 
frequency of 1 uniquely identify a particular document in 
the sample.  For this work, only those s-grams that are the 
most common in the best sample found are considered 
valuable.  It is these s-grams that have the ability to 
uniquely retrieve abnormal documents from a large set. 

B. Learning from Failures 
For this work, the MVS-GA has been augmented to store 

the common s-grams of the individuals that failed to 
reproduce children.  This will enable answering questions 
such as what characteristic phrases make failed individuals 
inferior to successful individuals.  After each generation, s-
grams and their frequencies from each failed individual are 
extracted from each individual and stored in memory.  After 
the MVS-GA has completed, the memory now contains the 
most common s-grams that caused individuals to fail in the 
GA.  The end result is that the MVS-GA learns the s-grams 
for both abnormal and normal classes of reports. 

IV. RESULTS 
The s-grams discovered by this learning algorithm on the 

data set are shown in Tables I and II.  Table I shows the top 
TABLE I 

TOP TEN S-GRAMS FROM MVS-GA BEST SOLUTION 

Rank S-gram 
Example Observed 

Variants 

1 magnification 
& views 

magnification views 
requested 660 

2 core & biopsy stereotactic guided core 
biopsy of microcalcifications 633 

3 needle & 
localization 

ultrasound-guided needle 
localization procedure 245 

4 nodular & 
density 

showing questionable 
increased nodular density 2726 

5 lymph & node atypically located 
intramammary lymph node 748 

6 needle & 
procedure 

stereotactic needle core 
biopsy procedure 57 

7 compression & 
views 

right anterior compression 
views 772 

8 spot & views recommended utilizing spot 
views 852 

9 spot & 
compression spot compression image 1123 

10 spot & 
magnification 

medially exaggerated right cc 
spot magnification 650 

 



  

ten s-grams from the best solution obtained by the MVS-
GA.  These s-grams tend to uniquely define abnormal 
reports.  Many of these s-grams refer to procedures that are 
performed in the event that a suspicious feature in the 
patient was observed by the radiologist.  For example, the 
patient may be asked to return with a few weeks for 
additional imaging such as an ultrasound and magnification 
imaging.  In addition, patients with suspicious features may 
undergo biopsy, and in some cases, may also have a needle 
localization performed to enhance the biopsy procedure.  

Furthermore, since breast cancer often affect the lymph 
nodes, radiologist look for abnormalities relating to the 
lymph nodes as well.  As can be seen in Table I, the MVS-
GA successfully learned key s-grams that would 
significantly enhance automated retrieval and analysis of 
abnormal reports. 

Table II show the top ten s-grams that begin with the 
“no” and were learned from the failed individuals in the 
MVS-GA.  As discussed previously, most normal reports 
contain some form of a “negation” phrase.  These phrases 
refer to the non-existence of a particular feature or 
condition in which the radiologist was searching.  
Abnormal reports may contain such negation phrases, 
however, abnormal reports tend to be more focused on the 
abnormalities that were found and not the abnormalities 
that were not found.  Consequently, the MVS-GA 
successfully learned from the failed samples the common s-
grams of normal reports. 

One of the most significant aspects of these results is that 
the learning algorithm did not require any specialized 
ontology or dictionary or feedback from a subject matter 
expert.  This approach utilized an unsupervised, domain 
independent learning algorithm to achieve these results.  
Now that the s-grams have been learned, relevant 
documents can now be retrieved and analyzed.  Future work 

will examine the retrieval quality of this approach. 

V. FUTURE WORK 
While the work described here focuses primarily on the 

learning aspect of mining radiology reports, there are many 
avenues for future research.  First, this work uniquely 
identified s-grams that defined two classes of 
mammography reports (abnormal and normal).  Other data 
sets may have more than two classes of data, and so future 
work will investigate the expansion of this approach to 
identify n classes of data.  Secondly, the work focused on a 
single learning algorithm that could be used for an 
intelligent software agent.  However, intelligent agents have 
additional capabilities that can be utilized.  To further 
enhance the learning capability and domain flexibility, 
future work will investigate cooperative agent learning to 
enhance this approach.  Finally, the current approach used a 
very rudimentary memory.  A more advanced cognitive 
memory model will be explored in the future.  
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TABLE II 
TOP TEN S-GRAMS WITH THE WORD “NO” 

Rank S-gram 
Example Observed 

Variants 

1 no & 
suspicious 

no finding strongly 
suspicious 1225 

2 no & 
calcifications 

no clear cut clustered 
punctate calcifications 137 

3 no & evident no mass lesions evident 46 
4 no & masses no new focal masses 365 

5 no & 
malignancy 

no specific evidence of 
malignancy 286 

6 no & residual no residual 
microcalcifications 56 

7 no & skin no skin abnormalities noted 68 

8 no & 
thickening no skin thickening seen 42 

9 no & 
complications no apparent complications 16 

10 no & change no apparent interval change 384 
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