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Abstract

Document clustering is a central method to mine massive amounts of data. Due to
the explosion of raw documents generated on the Internet and the necessity to analyze
them efficiently in various intelligent information systems, clustering techniques have
reached their limitations on single processors. Instead of single processors, general-
purpose multi-core chips are increasingly deployed in response to diminishing returns
in single processor speedup due to the frequency wall, but multi-core benefits only
provide linear speedups while the number of documents in the Internet grows expo-
nentially. Accelerating hardware devices represent a novel promise for improving the
performance for data-intensive problems such as document clustering. They offer more
radical designs with a higher level of parallelism but adaptation to novel programming
environments.

In this paper, we assess the benefits of exploiting the computational power of
Graphics Processing Units (GPUs) to study two fundamental problems in document
mining, namely TF-IDF (Term Frequency-Inverse Document Frequency) and docu-
ment clustering. We transform traditional algorithms into accelerated parallel coun-
terparts that can be efficiently executed on many-core GPU architectures. We assess
our implementations on various platforms ranging from stand-alone GPU desktops to
Beowulf-like clusters equipped with contemporary GPU cards. We observe at least one
order of magnitude speedups over CPU-only desktops and clusters. This demonstrates
the potential of exploiting GPU clusters to efficiently solve massive document mining
problems. Such speedups combined with the scalability potential and accelerator-based
parallelization are unique in the domain of document-based data mining, to the best of
our knowledge.
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1. Introduction

Document clustering, or text clustering, is a sub-field of data clustering where a
collection of documents are categorized into different subsets with respect to docu-
ment similarity. Such clustering occurs without supervised information, i.e., no prior
knowledge of the number of resulting subsets or the size of each subset is required.
Clustering analysis in general is motivated by the explosion of information accumu-
lated in today’s Internet, i.e., accurate and efficient analysis of millions of documents is
required within a reasonable amount of time. A recent flocking-based algorithm [2] im-
plements the clustering process through the simulation of mixed-species birds in nature.
In this algorithm, each document is represented as a point in a two-dimensional Carte-
sian space. Initially set at a random coordinate, each point interacts with its neighbors
according to a clustering criterion, i.e., typically the similarity metric between docu-
ments. This algorithm is particularly suitable for dynamical streaming data and is able
to achieve global optima, much in contrast to our algorithmic solutions [3].

In this research, we first solve one of the fundamental problems in document min-
ing, namely that of calculating TF-IDF vectors of documents. The TF-IDF vector
is subsequently utilized to quantify document similarity in document clustering al-
gorithms. In this work, we show how to re-design the traditional algorithm into a
CPU-GPU co-processing framework and we demonstrate up to 10X speedup over a
single-node CPU desktop.

In a second step, we aim at clustering at least one million documents at a time
based on the TF-IDF-like similarity metric. In document clustering, the size of each
document varies and can reach up to several kilo-bytes. Therefore, document cluster-
ing imposes an even higher pressure on memory usage than traditional data mining,
where data set is of much smaller and constant size. Unfortunately, many accelerators,
including GPUs, do not share memory with their host systems, nor do they provide
virtual memory addressing. Hence, there is no means to automatically transfer data
between GPU memory and host main memory. Instead, such memory transfers have to
be invoked explicitly. The overhead of these memory transfers, even when supported
by DMA, can nullify the performance benefits of execution on accelerators. Hence, a
thorough design to assure well-balanced computation on accelerators and communica-
tion / memory transfer to and from the host computer is required, i.e., overlap of data
movement and computation is imperative for effective accelerator utilization. More-
over, the inherently quadratic computational complexity in the number of documents
and the large memory footprints, however, make efficient implementation of flocking
for document clustering a challenging task. Yet, the parallel nature of such a model
bears the promise to exploit advances in data-parallel accelerators for distributed sim-
ulation of flocking.

As a result, we investigate the potential to purse our goal on a cluster of computers
equipped with NVIDIA CUDA-enabled GPUs. We are able to cluster one million doc-
uments over sixteen NVIDIA GeForce GTX 280 cards with 1GB on-board memory
each. Our implementation demonstrates its capability for weak scaling, i.e., execu-
tion time remains constant as the amount of documents is increased at the same rate



as GPUs are added to the processing cluster. We have also developed a functionally
equivalent multi-threaded MPI application in C++ for performance comparison. The
GPU cluster implementation shows dramatic speedups over the C++ implementation,
ranging from 30X to more than 50X speedups.

The contributions of this work are the following:

• We design highly parallelized methods to build hash tables on GPU as a premise
to calculate TF-IDF vectors for a given set of documents.

• We apply multiple-species flocking (MSF) simulation in the context of large-
scale document clustering on GPU clusters. We show that the high I/O and
computational throughput in such a cluster meets the demanding computational
and I/O requirements.

• In contrast to previous work that targeted GPU clusters [4, 5], our work is one
of the first to utilize CUDA-enabled GPU clusters to accelerate massive data
mining applications, to the best of our knowledge.

• The solid speedups observed in our experiments are reported over the entire ap-
plication (and not just by comparing kernels without considering data transfer
overhead to/from accelerator). They clearly demonstrate the potential for this
application domain to benefit from acceleration by GPU clusters.

The rest of the paper is organized as follows. We begin with the background de-
scription in Section 2. The design and implementation of TF-IDF calculation and doc-
ument clustering are presented in Section 3 and 4, respectively. In Section 5, we show
various speedups of GPU clusters against CPU clusters in different configurations. Re-
lated work is discussed in Section 6 and a summary is given in Section 7.

2. Background Description

In this section, we describe the algorithmic steps of TF-IDF and document cluster-
ing, and discuss details of the target programming environments.

2.1. TF-IDF
Term frequency (TF) is a measure of how important a term is to a document. The

ith term’s tf in document j is defined as:

tfi,j =
ni,j∑
k nk,j

(1)

where ni,j is the number of occurrences of the term in document dj and the denomina-
tor is the number of occurrences of all terms in document dj .

The inverse document frequency (IDF) measures the general importance of the term
in a corpus of documents. This is done by dividing the number of all documents by the
number of documents containing the term and then taking the logarithm.

idfi = log
|D|

|{dj : ti ∈ dj}|
(2)
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Figure 1: TF-IDF Workflow

where |D| is the total number of documents in the corpus and |{dj : ti ∈ dj}| is the
number of documents containing term ti.

Then, the TF-IDF value of the ith term in document j is:

tfidfi,j = tfi,j ∗ idfi (3)

The idea of TF-IDF can be extended to compare the similarities of two documents
di and dj . One of the simple way is to apply the similarity metric between any pair of
documents i and j:

Simi,j =
∑

k

|tfidfk,i − tfidfk,j |
2 (4)

for k over all terms of both document i and j. Obviously, the smaller the value is, the
more similar these two documents are considered.

There are many ways to calculate the TF-IDF given a corpus of documents. The
most straightforward method, also used by us, is illustrated in Figure 1. The first step,
which is part of the document preprocessing prior to the core TF-IDF calculation, ex-
cerpts and tokenizes each word of a document. It is also in this step that the stop words
are removed. Stop words, also known as the noise words, are common words that do
not contribute to the uniqueness of the document [6]. In the second step, some cognate



words are transformed into one form by applying certain stemming patterns for each.
This is necessary to obtain results with higher precision [7]. In step three, the document
hash table is built for each document. The <key, value> pairs in the token hash table
are the unique words that appear in the document and their occurrence frequencies,
respectively. In step four, all of these token hash tables are reduced into one global
occurrence table in which the keys remain the same, but values represent the number
of documents that contain the associated key. The TF-IDF for each term can be eas-
ily calculated by looking up the corresponding values in the hash tables according to
Equation 3 as seen in step five.

2.2. Flocking-based document clustering
The goal of document clustering is to form groups of individuals that share certain

criteria. Document similarity derived from TF-IDF provides the foundation to deter-
mine such similarities. In flocking-based clustering, the behavior of a boid (individual)
is based only on its neighbor flock mates within a certain range. Reynolds [8] describes
this behavior in a set of three rules. Let �pj and �vj be the position and velocity of boid j.
Given a boid noted as x, suppose we have determined N of its neighbors within radius
r. The description and calculation of the force by each rule is summarized as follows:

• Separation: steer to avoid crowding local flock mates

�fsep = −

N∑

i

�px − �pi

r2

i,x

(5)

where ri,x is the distance between two boids i and x.

• Alignment: steer towards the average heading of local flock mates

�fali =

∑N

i �vi

N
− �vx (6)

• Cohesion: steer to move toward the average position of local flock mates

�fcoh =

∑N

i �pi

N
− �px (7)

The three forces are combined to change the current velocity of the boid. In case
of document clustering, we map each document as a boid that participates in flocking
formation. For similar neighbor documents, all three forces are combined. For non-
similar neighbor documents, only the separation force is applied.

2.3. GPU and CUDA
Graphics programming units (GPUs) differ from general-purpose microprocessors

in their design for the single instruction multiple data (SIMD) paradigm. Due to the
inherent parallelism of vertex shading, GPUs have adopted multi-core architectures
long before regular microprocessors resort to such a design. While this decision is



driven by increasing demands for faster and more realistic graphics effects in the former
case, it is dictated by power and asymptotic single-core frequency limits for the latter.
As a result, today’s state-of-the-art GPUs consist of many small computation cores
compared to few large cores in off-the-shelve CPUs, at the cost of devoting less die
area for flow control and data caching in each core. Since graphics is a niche, albeit
a very influential one, that drives the progress in GPU architectures, much attention
has been paid to fast and independent vertex rendering. The computational rendering
engines of GPUs can generally be utilized for other problem domains as well, but their
effectiveness depends much on the suitability of numerical algorithms within the target
domain for GPUs.

In recent years, GPUs have attracted more and more developers who strive to com-
bine high performance, lower cost and reduced power consumption as an inexpensive
means for solving complex problems. This trend is expedited by the emergence of
increasingly user-friendly programming models, such as NVIDIA’s CUDA, AMD’s
Stream SDK and OpenCL. Our focus lies on the former of these models.

CUDA is a C-like language that allows programmer to execute programs on NVIDIA
GPUs by utilizing their streaming processors. The core difference between CUDA pro-
gramming and general-purpose programming is the capability and necessity to spawn
massive number of threads. Threads are grouped into warps as basic thread scheduling
units [9]. The same code is executed by threads in the same warp on a given stream-
ing processor. As these GPUs do not provide caches, memory latencies are hidden
through several techniques: (a) Each streaming processor contains a small but fast on-
chip shared memory that is exposed to programmers. (b) Large register files enable
instant hardware context switch between warps. This facilitates the overlapping of
data manipulation and memory access. (c) Off-chip global memory accesses issued si-
multaneously by multi-threads can be accelerated by coalesced memory access, which
requires aligned access pattern for consecutive threads in warps.

In this work, the massive throughput offered by GPUs is the major source of
speedup over conventional desktops.

2.4. MPI
The document flocking algorithm is not an embarrassingly parallel algorithm as it

requires exchange of data between nodes. We utilize MPI as a means to exchange data
between nodes. MPI is the dominant programming model in the high-performance
computation domain. It provides message passing utilities with a transparent interface
to communicate between distributed processes without considering the underlying net-
work configurations. It is also the de factor industrial standard for message passing
that offers maximal portability. In this work, we incorporate MPI as the basic means
to communicate data between distributed computation nodes. We also combine MPI
communication with data transfers between host memory and GPU memory to provide
a unified distributed object interface that will be discussed later.

3. Design and Implementation of TF-IDF Calculation

One of the key challenges in algorithmic design for GPGPUs is to keep all process-
ing elements busy. NVIDIA’s philosophy to ensure high utilization is to oversubscribe,
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i.e., more parallel work is dispatched than there are physical stream processors avail-
able. Using latency-hiding techniques, a processor stalled on a memory reference can
thus simply switch context to another dispatched work unit.

In order to fully utilize the large number of streaming processors in NVIDIA’s
GPUs, we process files in batches with the batch size chosen as 96. Several kernels are
developed to implement the steps described in Section 2.1. Each batch process requires
extensive data movement between host and GPU memories by DMA. First, to handle a
large amount of documents/files, especially when total document size is larger than the
GPU global memory, the document hash tables needs to be flushed out to host memory
once they are completely constructed. Second, the raw data of a document is pushed
from host memory to GPU global memory at the beginning of each batch process. To
reduce the overhead of memory movement, we developed the CPU/GPU collaboration
framework shown in Figure 2.

In each batch iteration, the CPU thread first launches the two preprocessing kernels
(Tokenize kernel and RemoveAffix kernel) asynchronously. Before invoking the next
kernels (BuildDocHash kernel and AddToOccTable kernel) that write to the document
and global occurrence hash table buffers in the GPU’s global memory, it waits for the
completion signal of the previous batch’s DMA that transfers the old batch table to host
memory. When the GPU is busy generating the document hash tables and inserting to-
kens into the global occurrence table, the CPU can prefetch the next batch of files from
disk and copy them to an alternate file stream buffer. At the end of the batch iteration,
the CPU again asynchronously issues a memory copy of the document hash table to the
host’s memory. Only in the next batch’s iteration will the completion of this DMA be
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synchronized. In this manner, part of the DMA time is overlapped with the GPU calcu-
lation by (a) double buffering the document raw data in GPU and (b) overlapping the
hash table memory copy in the current batch with the stream preprocessing (tokenize
and stem kernels) of the next batch [10].

To further reduce the DMA overhead, one may reduce the size of the document
hash table. This table differs from the global occurrence table, which resides in GPU
global memory but need not be copied to host until the end of execution. Therefore,
the data structures of these tables differ slightly as shown in Figure 3. The document
hash table contains a header and an array of entries, which are internally linked as a
list if they belong to the same bucket. The header is used to determine the bucket size
and to find the first entry in each bucket. In contrast, the global hash table consists of a
big array of entries evenly divided into buckets. Because the number of unique terms
is considered limited no matter how large the corpus size is, the number of buckets and
the bucket size can be chosen sufficiently large to avoid possible bucket overflows.

Another effort to reduce the size of the document hash table avoids storing the
actual term/word in the table. Instead, every entry simply maintains an index pointing
to the corresponding entry in the global occurrence table where the actual term is saved.
To reduce the number of hash key computations at hash insertion and during hash
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searches, the key is saved as an “unsigned long” in both hash tables. To further reduce
the probability of hash collisions (two terms sharing the same key), another field called
identity is added as an “unsigned int” to help differentiate terms. The identity is then
constructed as (term length << 16)|(first char << 8)|(last char).

Upon investigation, we determined that atomic operations supported by certain
GPUs via CUDA are facilitating the construction of a concise document hash table
without adversely affecting the parallelism of the algorithm. We alternatively provide
another method to generate the same hash table for GPUs without support for atomic
operations. Even though the latter method is slower than the first, it is required for GPU
devices that do not have atomic operation support (i.e., devices with CUDA compute
capability 1.0 or earlier).

3.1. Hash Table Updates using Atomic Operations
Access to hash table entries via atomic operations is realized in two steps as de-

picted in Figure 4. In the first step, the document stream is evenly distributed to a set
of CUDA threads. The number of threads, L, is chosen explicitly to maximize GPU’s
utilization. A buffer storing the intermediate hash table, which is close to the structural
layout of the global occurrence table, but with a smaller number of buckets K , is used
to sort terms by their bucket IDs. Every time a thread encounters a new term in the
stream and obtains its bucket ID, it issues an atomic increment (atomic-add-one) op-
eration to affect the bucket size. (Notice that the objective of this algorithmic TF-IDF
variant is not to identify identical terms. Instead, its chief objective is to compute a
similarity metric.) If we assume that terms are distributed randomly, then contention
during the atomic increment operation is the exception, i.e., threads of the same warp
are likely atomically incrementing disjoint bucket size entries.
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In the next step, the intermediate hash table is reduced to the final, more concise
document hash table shown in Figure 3. Each CUDA thread traverses one bucket in
the intermediate hash table, detects duplicate terms, and, if finds a new term, reserves
a place in the entry array by atomically incrementing the total size. It then pushes
the new entry into the header of the linked bucket list. Since different threads operate
on disjoint buckets, each linked list per bucket is accessed in mutual exclusion, which
guarantees absence of write conflicts between threads.

3.2. Hash Table Updates without Atomic Operations
In GPUs without atomic instruction support, the document stream is first split into

M packets, each of which is pushed into a different hash sub-table owned by one
thread in a block, as shown in step 1 of Figure 5. By giving each thread a separate
hash sub-table, we guarantee write protection (mutually exclusive writes of the values)
between threads. In step 2, K threads are re-assigned to different buckets of the sub-
table, identical terms are found in this step, and statistics for each bucket are generated.
Because terms have been grouped by their keys in step 1, there will be no write conflicts
between threads at this step either. The bucket size information is processed in step 3
to finally merge sub-tables to compose the final document hash table.



3.3. Discussions
The two procedures detailed above to handle hash tokens in a document do not

require information from any other documents. Thus, each document can be processed
simultaneously and independently in different GPU blocks. With a sufficiently large
number of documents, we can fully utilize the GPU cores and exploit NVIDIA’s latency
hiding on memory references through oversubscription. However, in the first step of
the second method, the number of packets M per document is delimited due to memory
constraint and the efficiency of the following steps. We choose a value of M = 16 in
our implementation. To compensate for this constraint, we can spawn more threads L
in the first method, e.g., by choosing L = 512. This constraint on parallelism results in
a non-atomic approach that is slower than its atomic variant.

From the memory usage’s perspective, the non-atomic approach consumes more
global memory simply because the intermediate hash tables in the non-atomic approach
are larger than that in the atomic approach. Both of the above methods cannot handle
very large single documents that exceed the size of the global memory. Since our
problem domain is that of Internet news articles, which typically do not exceed more
than 10K words, documents fits in memory for our implementation. This framework is
even suitable for arbitrarily large corpus sizes as we could reused without changes both
intermediate hash tables and the document hash table, the latter of which is flushed to
host memory for each batch of files.

4. Design and Implementation of Document Clustering

4.1. Programming Model for Data-parallel Clusters
We have developed a programming model targeted at message passing for CUDA-

enabled nodes. The environment is motivated by two problems that surface when ex-
plicitly programming with MPI and CUDA abstraction in combination:

• Hierarchical memory allocation and management have to be performed manu-
ally, which often burdens programmers.

• Sharing one GPU card among multiple CPU threads can improve the GPU uti-
lization rate. However, explicit multi-threaded programming not only compli-
cates the code, but may also result in inflexible designs, increased complexity
and potentially more programming pitfalls in terms of correctness and efficiency.

To address these problems, we have devised a programming model that abstracts
from CPU/GPU co-processing and mitigates the burden of the programmer to explicitly
program data movement across nodes, host memories and device memories. We next
provide a brief summary of the key contributions of our programming model (see [11]
for a more detailed assessment):

• We have designed a distributed object interface to unify CUDA memory man-
agement and explicit message passing routines. The interface enforces program-
mers to view the application from a data-centric perspective instead of a task-
centric view. To fully exploit the performance potential of GPUs, the underlying
run-time system can detect data sharing within the same GPU. Therefore, the
network pressure can be reduced.



• Our model provides the means to spawn a flexible number of host threads for
parallelization that may exceed the number of GPUs in the system. Multiple
host threads can be automatically assigned to the same MPI process. They sub-
sequently share one GPU device, which may result in higher utilization rate than
single-threaded host control of a GPU. In applications where CPUs and GPUs
co-process a task and a CPU cannot continuously feed enough work to a GPU,
this sharing mechanism utilizes GPU resources more efficiently.

• An interface for advanced users to control thread scheduling in clusters is pro-
vided. This interface is motivated by the fact that the mapping of multiple threads
to physical nodes affects performance depending on the application’s commu-
nication patterns. Predefined communication patterns can simply be selected
so that communication endpoints are automatically generated. More complex
patterns can be supported through reusable plug-ins as an extensible means for
communication.

We have designed and implemented the flocking-based document clustering algo-
rithm in GPU clusters based on this GPU cluster programming model. In the following,
we discuss several application-specific issues that arise in our design and implementa-
tion.

4.2. Preprocessing
The prerequisite of document clustering is to have a standard means to measure

similarities between any two documents. While the TF-IDF concept exactly matches
this need, there are two practical issues when targeting clusters:

• There is a reduce step (step 4 in Figure 1) to generate a single global occurrence
hash table. This is a high payload all-to-all communication in clusters and thus
is not scalable.

• The TF-IDF calculation cannot start until all documents have been processed
and inserted in the global occurrence table. Therefore, it is not suited for stream
processing.

A new term weighting scheme called term frequency-inversecorpus frequency (TF-
ICF) has been proposed to solve the above problems at the scale of massive amounts of
documents [12]. It does not require term frequency information from other documents
within the processed document collections. Instead, it pre-builds the ICF table by
sampling a large amount of existing literature off-line. Selection of corpus documents
for this training set is critical as similarities between documents of a later test set are
only reliable if both training and test sets share a common base dictionary of terms
(words) with a similar frequency distribution of terms over documents. Once the ICF
table is constructed, ICF values can be looked up very efficiently for each term in
documents while TF-IDF would require dynamic calculation of these values. The TF-
ICF approach enables us thus to generate document vectors in linear time.



4.3. Flocking Space Partition
The core of the flocking simulation is the task of neighborhood detection. A se-

quential implementation of the detection algorithm has O(N2) complexity due to pair-
wise checking of N documents. This simplistic design can be improved through space
filtering, which prunes the search space for pairs of points whose distances exceed a
threshold.

One way to split the work into different computational resource is to assign a fixed
number of documents to each available node. Suppose there are N documents and
P nodes. In every iteration of the neighborhood detection algorithm, the positions
of local documents are broadcast to all other nodes. Such partitioning results in a
lower communication overhead proportional to the number of nodes, and the detection
complexity is reduced linearly by P per node for a resulting overhead of O(N2/P ).

Instead of partitioning the documents in this manner, we break the virtual simula-
tion space into row-wise slices. Each node handles just those documents located in the
current slice. Broadcast messages that are previously required are replaced by point-to-
point messages in this case. This partitioning is illustrated in Figure 6. After document
positions are updated in each iteration, additional steps are performed to divide all
documents into three categories. Migrating documents are those that have moved to
a neighbor slice. Neighbor documents are those that are on the margin of the current
slice. In other words, they are within the range of the radius r of neighbor slices. All
other are internal documents in the sense that they do not have any effects on the docu-
ments in other nodes. Since the velocity of documents is capped by a maximal value, it
is impossible for the migrating documents to cross an entire slice in one timestep. Both
the migrating documents and neighbor documents are transferred to neighbor slices at
the beginning of the next iteration. Since the neighborhood radius r is much smaller
than the virtual space’s dimension, the number of migrating documents and neighbor
documents are expected to be much smaller than that of the internal documents.

Sliced space partitioning not only splits the work nearly evenly among computing
nodes but also reduces the algorithmic complexity in sequential programs. Neighbor-
hood checks across different nodes are only required for neighbor documents within
the boundaries, not for internal documents. Therefore, on average, the detection com-
plexity on each node reduces to O(N2/P 2) for slides partitioning, which is superior to
traditional partitioning with O(N2/P ).

4.4. Document Vectors
An additional benefit of MSF simulation is the similarity calculation between two

neighbor documents. Similarities could be pre-calculated between all pairs and stored
in a triangular matrix. However, this is infeasible for very large N because of a space
complexity of O(N2/2), which dauntingly exceeds the address space of any node as N
approaches a million. Furthermore, devising an efficient partition scheme to store the
matrix among nodes is difficult due to the randomness of similarity look-ups between
any pair of nearby documents. Therefore, we devote one kernel function to calculating
similarities in each iteration. This results in some duplicated computations, but this
method tends to minimize the memory pressure per node.

The data required to calculate similarities is a document vector consisting of an
index of each unique word in the TF-ICF table and its associated TF-ICF values. To
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compute the similarity between two documents, as shown in Equation (4), we need
a fast method to determine if a document contains a word given the word’s TF-ICF
index. Moreover, the fact that we need to move the document vector between neighbor
nodes also requires that the size of the vector should be kept small.

The approach we take is to store document vectors in an array sorted by the index
of each unique word in the TF-ICF table. This data structure combines the minimal
memory usage with a fast parallel searching algorithm. Riech [13] describes an effi-
cient algorithm to calculate the cosine similarities between any two sorted arrays. But
this algorithm is iterative in nature and not suitable for parallel processing.

We develop an efficient CUDA kernel to calculate the similarity of two documents
given their sorted document vectors as shown in Algorithm 1. The parallel granularity
is set so that each block takes one pair of documents. Document vectors are split evenly
by threads in the block. For each assigned TF-ICF value, each thread determines if the
other document vector contains the entry with the same index. Since the vectors are
sorted, a binary search is conducted to lower the algorithmic complexity logarithmic
time. A reduction is performed at the end to accumulate differences.

4.5. Message Data Structure
In sliced space partitioning, each slice is responsible to generate two sets of mes-

sages for the slices above and below. The corresponding message data structures are
illustrated in Figure 7. The document array contains a header that enumerates the num-
ber of neighbors and migrating documents in the current slice. Their global indexes,
positions and velocities are stored in the following array for neighborhood detection in
a different slice. Due to the various sizes of each document’s TF-ICF vector and the
necessity to minimize the message size, we concatenate all vectors in a vector array
without any padding. The offset of each vector array is stored in a metadata offset
array for fast access. This design offers efficient parallel access to each document’s
information.

4.6. Optimizations
The algorithmic complexity of sliced partitioning decreases quadratically with the

number of partitions (see Section 4.3). For a system with a fixed number of nodes, a



Algo 1: Document Vector Similarity (CUDA Kernel)

// calculate the similarities between two DocVecs
device void docVecSimilarity(DocVec∗ lhs, DocVec ∗rhs, float ∗output) {
float sim(0.0f);
float commonSim(0.0f);
for (int i = 0; i < lhs→NumEntries; i += blockIdx.x) {

float tficf = biSearch(entry, rhs→vectors);
sum += pow(entry→tficf − tficf, 2);
commonSim += pow(tficf, 2);

}
// ... reduce to threadIdx.x(0), store in sum

syncthreads();
if (threadIdx.x == 0) {

sum −= commonSim;
sum = sqrtf(sum);
// write to global memory
∗output = sum;

}
}

device float biSearch(VecEntry ∗entry, DocVector ∗vector) {
int idx = entry→index;
int leftIndex = 0;
int rightIndex = vector→NumEntries;
int midIndex = vector→NumEntries/2;
while(true) {

int docIdx;
docIdx = vector→vectors[midIndex].index;
if (docIdx < idx)

leftIndex = midIndex + 1;
else if (docIdx > idx)

rightIndex = midIndex − 1;
else

break;

if (leftIndex > rightIndex)
return 0.0f;

midIndex = (leftIndex + rightIndex)/2;
}
return vector→vectors[midIndex].tficf;

}
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reduction in complexity could be achieved by exploiting multi-threading within each
node. However, in practice, overhead increases as the number of partitions become
larger. This is particularly this case for communication overhead. As we will see in
Section 5, the effectiveness of such performance improvements differs from one system
to another.

At the beginning of each iteration, each thread issues two non-blocking messages to
its neighbors to obtain the neighboring and migrating documents’ statuses (positions)
and their vectors. This is followed by a neighbor detection function that searches its
neighbor documents within a certain range for each internal document and migrated
document. The search space includes every internal, neighbor and migrating document.
We can split this function into three sub-functions: (a) internal-to-internal document
detection; (b) internal-to-neighbor/migrating document detection and (c) migrating-
to-all document detection. Sub-function (a) does not require information from other
nodes. We can issue this kernel in parallel with communication. Since the number of
internal documents is much larger than neighbor and migrated documents, we expect
the execution time for sub-function (a) to be much larger than that of (b) or (c). From
the system’s point of view, either the communication or neighbor detection functions
affects the overall performance.

One of the problems in simulating massive documents via the flocking-based al-
gorithm is that as the virtual space size increases, the probability of flock formation
diminishes as similar groups are less likely to meet each. In nature-inspired flocking,
no explicit effort is made within simulations to combine similar species into a unique
group. However, in document clustering, we need to make sure each cluster has formed
only one group in the virtual space in the end without flock intersection. We found that
an increase in the number of iterations helps in achieving this objective. We also dy-
namically reduce the size of the virtual space throughout the simulation. This increases
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the likelihood of similar groups to merge when they become neighbors.

4.7. Work Flow
The work flow for each space partition at an iteration is shown in Figure 8. Each

thread starts by issuing asynchronous messages to fetch information from neighbor-
ing threads. Messages include data such as positions of the documents that have mi-
grated to the current thread and documents at the margin of the neighbor slices. Those
documents’ TF-ICF vectors are encapsulated in the message for similarity calculation
purposes, as discussed later.

Internal-to-internal document detection can be performed in parallel with message
passing (see Section 4.6). The other two detection routines, in contrast, are serialized
with respect to message exchanges. Once all neighborhoods are detected, we calcu-
late the similarities between the documents belonging to the current thread and their
detected neighbors. These similarity metrics are utilized to update the document posi-
tions in the next step where the flocking rules are applied.

Once the positions of all documents have been updated, some documents may have
moved out the boundary of the current partition. These documents are removed from
the current document array and form the messages for neighboring threads for the next
iteration. Similarly, migrated documents received through messages from neighbors



16 GPUs (NCSU) 16 CPUs (NCSU) 3 GPUs (ORNL) 3 CPUs (ORNL)
Nodes 16 16 4 4

CPU Cores AMD Athlon Dual AMD Athlon Dual Intel Quad Q6700 Intel Quad Q6700
CPU Frequency 2.0 GHz 2.0 GHz 2.67 GHz 2.67 GHz
System Memory 1 GB 1 GB 4 GB 4 GB

GPU 16 GTX 280s Disabled 3 Tesla C1060 Disabled
GPU Memory 1 GB N/A 4 GB N/A

Network 1 Gbps 1 Gbps 1 Gbps 1 Gbps

Table 1: Experiment Platforms

are appended to the current document array. This post-processing is performed in the
last three steps in Figure 8.

5. Experimental Results

5.1. Experiment Setups
We conduct two independent sets of experiments to show the performance of our

TF-IDF and document clustering results.
TF-IDF experiments are conducted on a stand-alone desktop in two configurations:

with GPU enabled and disabled. When the GPU is disabled, we assess the performance
of a functionally equivalent CPU baseline version (single-threaded in C/C++). The test
platform utilizes Fedora 8 Core Linux with a dual-core AMD Athlon 2 GHz CPU with
2 GB of memory. The installation includes the CUDA 2.0 beta release and NVIDIA’s
Geforce GTX 280 as GPU devices. The test input data is selected from Internet news
documents with variable sizes ranging from around 50 to 1000 English words (after
stop-word removal). The average number of unique word in each article is about 400
words.

Similarly, the document clustering experiments are conducted on GPU-accelerated
clusters with GPUs enabled and disabled. In the absence of GPUs, the performance of
a multi-threaded CPU version of the clustering algorithm is assessed. In this version,
internal document vectors are stored in STL hash containers instead of sorted document
vectors used in GPU clusters. This combines benefits of fast serial similarity checking
with ease of programming. The message structure is the same in both implementations.
Hence, functions are provided to convert STL hashes to vector arrays and vice versa.
In document clustering experiments, both GPU and CPU implementations incorporate
the same MPI library (MPICH 1.2.7p1 release) for message passing and the C++ boost
library (1.38.0 release) for multi-threading in a single MPI process. The GPU version
uses the CUDA 2.1 release.

5.2. TF-IDF Experiments
In TF-IDF experiments, we first compare the execution time for one batch of 96

files. The individual module speedup and their percentages in total are shown in Figure
9 and Figure 10.
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Notice that the speedup on the y-axis of Figure 9 is depicted on a logarithmic scale.
Compared to the CPU baseline implementation, we achieve more significant speedups
for those modules engaged in the preprocessing phase (factor of 30 times faster in
tokenize and 20 times faster in strip affixes kernels) than for those at the hash table
construction phase (around 3 times faster in both document hash table and occurrence
table insertion kernels). The limits in speedup during the latter are due to the multi-step
hash table construction algorithms described in Section 3. The algorithm has certain
overheads that the CPU benchmark does not contain. These overheads include (a) the
construction of intermediate or hash sub-tables; (b) branching penalties suffered from
the SIMD nature of GPU cores due to the imbalance in the distribution of tokens for a
hash table’s buckets; and (c) non-coalesced global memory access patterns as a result
of the randomness of the hash key generation. Furthermore, the kernel for occurrence
table insertion does not fully exploit all GPU cores because insertion is inherently
serialized over files to avoid write conflicts within the same hash table bucket.

We also observe a reduction in the calculation time to the extent that the DMA
overhead has become the largest contributor to overall time in a single batch scenario
accounting for almost half of the total execution time. The combined time with disk
I/O exceeds the total kernel execution time on GPU.

The observation above gives us the motivation to mitigate the memory overhead by
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double buffering the stream and hash tables when the corpus size gets larger. While we
cannot hide the DMA overhead of a first batch, the DMA time of subsequent batches
can be completely overlapped with the computational kernels in a multi-batch scenario.
Figure 11 shows the execution time of CPU and CUDA with different corpus sizes.

The execution time of the two methods (both with and with the use of atomic in-
structions) are measured. With almost perfect parallelization between GPU calculation
and data migration, we can hide almost all the kernel execution time in the DMA trans-
fer and disk I/O time, which indicates a lower bound of the execution time. As a result
the the asymptotic average batch processing time is almost half comparing to the single
batch execution time, in which case the calculation and DMA cannot be overlapped.
We also observe that the overall acceleration rates are 9.15 and 7.20 times faster than
the CPU baseline.



(a) Initial State (b) At Iteration 50 (c) At Iteration 500

Figure 12: Clustering 20K Documents in 4 GPUs

5.3. Flocking Behavior Visualization
We have implemented support to visualize the flocking behavior of our algorithm

off-line once the positions of documents are saved after an iteration. The evolution of
flocks can be seen in the three snapshots of the virtual plane in Figure 12, which shows
a total of 20,000 documents clustered on four GPUs. Initially, documents are assigned
at random coordinates in the virtual plane. After only 50 iterations, we observe an
initial aggregation tendency. We also observe that the number of non-attached docu-
ments tends to decrease as the number of iterations increases. In our experiments, we
observe that 500 iterations suffice to reach a stable state even for as many as a million
documents. Therefore, we use 500 iterations throughout the rest of our experiments.

As Figure 12 shows, the final number of clusters in this example is quite large. This
is because our input documents from the Internet cover widely divergent news topics.
The resulting number is also a factor of the similarity threshold used throughout the
simulation. The smaller the threshold is / the more strict the similarity check is, the
more groups we will be formed through flocking.

5.4. Document Clustering Performance
We first compare the performance of individual kernels on an NVIDIA GTX 280

GPU hosted on a AMD Athlon 2 GHz Dual Core PC. We focus on two of the most time-
consuming kernels: detecting neighbor documents (detection for short) and neighbor
document similarity calculation (similarity for short). Only the GPU kernel is mea-
sured in this step. The execution time is averaged over 10 independent runs. Each run
measures the first clustering step (first iteration in terms of Figure 12) to determine the
speedup over the CPU version starting from the initial state. The speedup at different
document sizes is shown in Figure 13. We can see that the similarity kernel on the GPU
is about 45 times faster than on a CPU at almost all document sizes. For the detection
kernel, the GPU is fully utilized once the document size exceeds 20,000, which gives
a raw speedup of over 300X.

We next conducted experiments on two clusters located at NCSU and ORNL. On
both clusters, we conducted test with and without GPUs enabled (see hardware config-
urations in Table 1). The NCSU cluster consists of sixteen nodes with CPUs and GPUs
of lower RAM capacity for both CPU and GPU, while the ORNL cluster consists of
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fewer nodes with larger RAM capacity. As mentioned in Section 4.1, our programming
model supports a flexible number of CPU threads that may exceed the number of GPUs
on our platform. Thus, multiple CPU threads may share one GPU. In our experiments,
we assessed the performance for both one and two CPU threads per GPU.

Figure 14 depicts the results for wall-clock time on the NCSU cluster. The curve
is averaged over the execution for both one and two CPU threads per GPU. The er-
ror bar shows the actual execution time: the maximum/minimum represent one/two
CPU threads per GPU, respectively. With increasing of number of nodes, execution
time decreases and the maximal number of documents that can be processed at a time
increases. With 16 GTX 280s, we are able to cluster one million documents within
twelve minutes. The relative speedup of the GPU cluster over the CPU cluster ranges
from 30X to 50X. As mentioned in Section 4.6, changing the number of threads sharing
one GPU may cause a number of conflicts in resource. The benefit of multi-threading
in this cluster is only moderate with only up to a 10% performance gain.

Though the ORNL cluster contains fewer nodes, its single-GPU memory size is
four times larger than that of the NCSU GPUs. This enables us to cluster one million
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documents with only three high-end GPUs. The execution time is shown in Figure 15.
The performance improvement resulting for two CPU threads per GPU is more obvious
in this case: at one million documents, three nodes with two CPU threads per GPU run
20% faster than the equivalent with just one CPU thread per GPU. This follows the
intuition that faster CPUs can feed more work via DMA to GPUs.

Speedups on the GPU cluster for different number of nodes and documents are
shown in the 3D surface graph Figure 16 for the NCSU cluster. At small document
scale (up to 200k documents), 4 GPUs achieve the best speedup (over 40X). Due to
the memory constraints in these GPUs, only 200k documents can be clustered on 4
GPUs. Therefore, speedups at 500k documents are not available for 4 GPUs. For 8
GPUs, clustering with 500k documents shows an increased performance. This surface
graph illustrates the overall trends: For fewer nodes (and GPUs), speedups increase
rapidly over for smaller number of documents. As the number of documents increases,
speedups are initially on a plane with a lower gradient before increasing rapidly, e.g.,
between 200k and 500k documents for 16 nodes (GPUs).

We next study the effect of utilizing point-to-point messages for our simulation al-
gorithm. Because messages are exchanged in parallel with the neighborhood detection
kernel for internal documents, the effect of communication is determined by the ratio
between message passing time and kernel execution time: If the former is less than the
latter, then communication is completely hidden (overlapped) by computation. In an
experiment, we set the number of documents to 200k and vary the number of nodes
from 4 to 16. We assess the execution time per iteration by averaging the communica-
tion time and kernel time among all nodes. The result is shown in Figure 17. For the
GPU cluster, kernel execution time is always less than the message passing time. For
the CPU cluster, the opposite is the case.

Notice that the communication time for the GPU cluster in this graph includes the
DMA duration for data transfers between GPU memory and host memory. The DMA
time is almost two orders of magnitude less than that of message passing. Thus, the
GPU communication/DMA curve almost coincides with that of CPU cluster’s commu-
nication time, even though the latter only covers pure network time as no host/device
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Figure 16: Speedups on NCSU cluster

Docs(k) 5 10 20 50 100 200 500 800 1000
4 nodes 74/9 67/8 64/5 58/3 52/1.5 49/0.9 NA NA NA
8 nodes 67/12 71/11 65/8 68/6 62/3.5 56/2 52/1.2 NA NA

12 nodes 67/17 69/12 68/10 71/8 68/6 63/3 57/1.4 54/1.2 NA
16 nodes 63/18 63/13 71/12 69/9 65/7 66/4.2 59/1.9 60/1.5 55/1.1

Table 2: Fraction of Communication in GPU and CPU clusters (GPU/CPU) [in %]

DMA is required. This implies that internal PCI-E memory bus is not a bottleneck for
GPU clusters in our experiments, which is important for performance tuning efforts.
The causes for this finding are: (a) Network bandwidth is much lower than PCI-E
memory bus bandwidth; and (b) messages are exchanges at roughly the same time on
every node at each iteration, which may cause network congestion.

We further aggregate the time spent on message passing and divide the overall sum
by the total execution time to yield the percentage of time spent on communication.
For CPUs, the communication time consists of only the message passing time over the
network. For GPUs, the communication time also includes the time to DMA messages
to/from GPU global memory over the PCI-E memory bus. Table 2 shows the results
for both GPU and CPU clusters. Generally speaking, in both cases, the ratio of com-
munication to computation decreases as the number of documents per thread increases.
The raw kernel speedup provided by GPU has dramatically increased the communica-
tion percentage. This analysis, indicating communication as a new key component for
GPU clusters while CPUs are dominated by computation, implies disjoint optimiza-
tion paths: faster network interconnects would significantly benefit GPU clusters while
optimizing kernels even further would more significantly benefit CPU clusters.
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6. Related Work

Our acceleration approach over CUDA to calculate document-level TF-IDF val-
ues uncovers yet another area of potential for GPUs where they outperform general-
purpose CPUs. While it has been demonstrated that CUDA can significantly speedup
many computationally intensive applications from domains such as scientific compu-
tation, physics and molecular dynamics simulation, imaging and the finance sector
[14, 15, 16, 17, 18, 19], acceleration is less commonly used in other domains, espe-
cially those with integer-centric workloads, with few exceptions[20, 21]. This is partly
due to the perception that fast (vector) floating-point calculation are the major contribu-
tor to performance benefits of GPUs. However, careful parallel algorithmic design may
results in significant benefits as well. This is the premise of our work for text search
workload deployment on GPUs.

Related research to document clustering can be divided into two categories: (1) fast
simulation of group behavior and (2) GPU-accelerated implementations of document
clustering. (1) The first basic flocking model was devised by Reynolds [22]. Here,
each individual is referred as a “boid”. Three rules are quantified to aid the simula-
tion of flocks: separation, alignment and cohesion. Since document clustering groups
documents in different subsets, a multiple-species flocking (MSF) model is developed
by Cui et al. [2]. This model adds a similarity check to apply only the separation
rule to non-similar boids. A similar algorithm is found by Momen et al. [23] with
many parameter tuning options. Computation time becomes a concern as the need
to simulate large numbers of individuals prevails. Zhou et al. [24] describe a way
to parallelize the simulation of group behavior. The simulation space is dynamically
partitioned into P divisions, where P is the number of available computing nodes. A
mapping of the flocking behavioral model onto streaming-based GPUs is presented
by Erra et al. [25] with the objective of obstacle avoidance. This study predates the
most recent language/run-time support for general-purpose GPU programming, such
as CUDA, which allows simulations at much larger scale.

(2) Recently, data-parallel co-processors have been utilized to accelerate many
computing problems, including some in the domain of massive data clustering. One
successful acceleration platform is that of Graphic Processing Units (GPUs). Parallel



data mining on a GPU was assessed early on by Che et al. [26], Fang et al. [27]
and Wu et al. [28]. These approaches rely on k-means to cluster a large space of
data points. Since the size of a single point is small (e.g., a constant-sized vector of
floating point numbers to represent criteria such as similarity in our case), memory
requirements are linear to the size of individuals (data points), which is constrained
by the local memory of a single GPU in practice. Previous research has demonstrated
more than five times speedups using a single GPU card over a single-node desktop for
several thousands documents [29]. This testifies to the benefits of GPU architectures
for highly parallel, distributed simulation of individual behavioral models. Nonethe-
less, such accelerator-based parallelization is constrained by the size of the physical
memory of the accelerating hardware platform, e.g., the GPU card.

7. Conclusion

In this paper, we present a complete application-level study of using GPUs to ac-
celerate data-intensive document clustering algorithms.

We first propose a hardware-accelerated variant of the TF-IDF rank search algo-
rithm exploiting GPU devices through NVIDIA’s CUDA. We then develop two highly
parallelized methods to build hash tables, one with and one without support of atomic
instructions. Even though floating-point calculations are not dominating this text min-
ing domain and its text processing characteristics limit the effectiveness of GPUs due
to non-synchronized branching and diverging, data-dependent loop bounds, we achieve
a significant speedup over the baseline algorithm on a general-purpose CPU. More
specifically, we achieve up to a 30-fold speedup over CPU-based algorithms for se-
lected phases of the problem solution on GPUs with overall wall-clock speedups rang-
ing from six-fold to eight-fold depending on algorithmic parameters.

We further extend our work to a broader scope by implementing large-scale docu-
ment clustering on GPU clusters. Our experiments show that GPU clusters outperform
CPU clusters by a factor of 30X to 50X, reducing the execution time of massive doc-
ument clustering from half a day to around ten minutes. Our results show that perfor-
mance gains stem from three factors: (1) acceleration through GPU calculations, (2)
parallelization over multiple nodes with GPUs in a cluster and (3) a well thought-out
data-centric design that promotes data parallelism. Such speedups combined with the
scalability potential and accelerator-based parallelization are unique in the domain of
document-based data mining, to the best of our knowledge.
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