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ABSTRACT 
 
The variation of household attributes such as income, travel distance, age, household 
member, and education for different residential areas may generate different market 
penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with 
higher PHEV ownership could increase peak electric demand locally and require utilities 
to upgrade the electric distribution infrastructure even though the capacity of the whole 
regional power grid is under-utilized. Estimating the future PHEV ownership distribution 
at the residential household level can help us understand the impact of PHEV fleet on 
power line congestion, transformer overload and other unforeseen problems at the local 
residential distribution network level. It can also help utilities manage the timing of 
recharging demand to maximize load factors and utilization of existing distribution 
resources. This paper presents a multi agent-based simulation framework for 1) modeling 
spatial distribution of PHEV ownership at local residential household level, 2) 
discovering “PHEV hot zones” where PHEV ownership may quickly increase in the near 
future, and 3) estimating the impacts of the increasing PHEV ownership on the local 
electric distribution network with different charging strategies. In this paper, we use 
Knox County, TN as a case study to show the simulation results of the agent-based model 
(ABM) framework. However, the framework can be easily applied to other local areas in 
the U.S.  
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1. Introduction 
 



By introducing Electric Vehicles (EV) that can operate in a full electric mode and be 
powered by the electricity grid will largely reduce the Green House Gas (GHG) emission 
and reduce the U.S. dependence on the foreign oil import (Parry, 2007). However, 
anxiety by consumers from battery travel range is a major concern for potential electric 
vehicle buyers. When electrical charge stations are not widely deployed for convenience 
battery recharge, fear of being stranded in an electric vehicle due to insufficient battery 
capacity will be a major deterrent for wide-spread acceptance of the EV in current period.     

Plug-in hybrid electric vehicles (PHEV) received considerable attention in recent 
years (Denholm and Short, 2006). A PHEV is different from an EV whose battery is the 
only energy source for propelling the vehicle and which needs the electric recharge 
station on the road for refuel, a PHEV can be viewed as a regular hybrid electric vehicle 
(HEV) with bigger battery capacity and a recharge capability from power grid. Drivers 
can fill the PHEV up at the gas station on the road and also plug it in for recharging at 
home (Parks et al., 2007). The energy stored in the PHEV battery pack will be used first 
like an EV for local commute travel, and the gas will be used for greater distance travel 
and backup. The PHEV can operate in charge sustaining mode like a regular HEV should 
the driver need to drive longer distance and there are no battery recharge stations 
available on the road.  

The electric recharge capability of PHEV offers more promise to replace a significant 
portion of the nation’s current fuel-based light vehicle fleet and alleviate dependence on 
petroleum fuels before the EV battery recharging infrastructure is fully deployed 
nationwide. The burden of an undeveloped recharging infrastructure is transferred to the 
power grid that supplies electricity to the residence. The general assumption is that the 
electric power grid is built to support peak loads and, as a consequence, suffers from low 
asset utilization rates in off-peak periods. In principle, this under-utilized capacity could 
effectively power a national fleet of PHEVs with little need to increase the energy 
delivery capacity of the existing grid infrastructure. Kintner-Meyer et al. (Kintner-Meyer 
et al., 2007) indicated that existing electric power generation plants would be used at full 
capacity for most hours of the day to support up to 84% of the nation’s cars, pickup 
trucks and SUVs for a daily drive of 33 miles on average. However, the assumption does 
not consider that PHEV users will most likely charge their vehicles when convenient, 
rather than waiting for power grid off-peak periods. For example, drivers will plug in for 
recharging their PHEVs in early evening when they return home from work.  

In recent years, it has been recognized that the need to increase the electric capacity 
for large PHEV acceptance by consumers can be mitigated by several factors including 
market penetration and distribution of the PHEVs, and the vehicle charging time. A 
number of studies have modeled the impact of different scales of PHEV market 
penetration on the power grid (Denholm and Short, 2006; Lemoine et al., 2007; Parks et 
al., 2007). Hadley and Tsvetkova (Hadley and Tsvetkova, 2009) indicated that most 
regions would need to build additional generation capacity to meet the added electric 
demand when PHEVs are charged in the evening. Lilienthal and Brown (Lilienthal and 
Brown, 2007) showed that uncontrolled charging strategy of PHEVs would place 
increased pressure on power grid. No additional generation capacity would be required 
for a large penetration of PHEVs only when all charging cycles start in the off-peak 
periods. Lemoine et al. (Lemoine et al., 2007) also mentioned that the system generation 
requirements were calculated for 1, 5, and 10 million PHEVs charging from the 



California grid, assuming an effective charging rate of 1Kw. Letendre and Watts 
(Letendre and Watts, 2009) have looked at the charging loads of three different PHEV 
penetration rates (i.e., 50k, 100k, and 200k) and three different charging scenarios such as 
uncontrolled charging, delayed charging, and off-peak charging. 

Most current research is focused on PHEV charging load impacts on state and 
regional electric grids based on total electric generation capacity level. The PHEV 
charging loads are computed based on different charging strategies that the future PHEV 
fleet may adopt. By aggregating all PHEVs’ charging consumption and comparing the 
result with the total state or regional electric grid’s maximum, the researchers can 
validate if there is sufficient electric capacity for assumed PHEV penetration rate. 
However, those research efforts have made the assumption that newly purchased PHEVs 
in the future will be evenly distributed across residential areas and ignores the possibility 
of imbalanced PHEV penetration in different residential areas. Practically speaking, since 
the PHEV penetration rate has a correlation with household demographic attributes such 
as income, travel distance, age, household member, education and neighborhood effect, 
the variation of these household demographic attributes in different residential areas may 
generate different PHEV penetration rate patterns. In this case, if a region with the total 
electric generation and power grid capacity are under-utilized and too many consumers 
on a given circuit recharge their plug-in vehicles simultaneously, it could increase peak 
electric demand locally and require utilities to upgrade the electric distribution 
infrastructure. 

Understanding the impact of the PHEV fleet on electric line congestion, transformer 
overloads and other unforeseen problems with the electric distribution network at the 
local residential level and estimating potential “PHEV hot zones” are challenges faced by 
today’s utilities system.  These residential distribution networks will experience the new 
load as a significant impact even if PHEV acceptance is small in the beginning. There 
may be specific points along some electric distribution lines that face congestion if local 
patterns of electricity demand change significantly because of PHEV recharging. At the 
substation levels, the demands are less aggregated. As a result, the electrical grid 
substations are more sensitive to the usage patterns of a few customers. Understanding 
the future potential “PHEV hot zones” and estimating the “PHEV hot zones’” impact on 
local electric distribution network can help utilities manage the timing of recharging 
demand to maximize load factors and utilization of existing distribution resources.  

To evaluate the impact on the local electric distribution network, it is necessary to 
estimate several factors including the distribution of PHEVs, owner driving behavior and 
charging pattern at the individual household level. The objective of this research is to 
develop an agent-based framework for 1) modeling spatial distribution of PHEV 
household adoption in residential areas, 2) evaluating the impacts of PHEVs charging 
load on a residential electric distribution network with different charging strategies, and 3) 
discovering “PHEV hot zones” where PHEV ownership may quickly increase in the near 
future. We use Knox County, TN as a case study to show the simulation results of the 
proposed agent-based model (ABM) framework. However, the framework can be easily 
applied to any other local area in the U.S. The framework use multi agent-based 
simulation to produce possible global outcomes (the PHEV distribution and PHEV 
charge load) given sets of assumptions of how individual agents decide about adoption of 
new technology for their future vehicle and charge pattern for their PHEV. The 



simulation results from this framework may help utilities to prioritize investments given 
electric load growth projections.  

This paper is organized as follows: Section 2 describes the agent-based PHEV 
household adoption model for estimating PHEV ownership distribution in local 
residential areas. Section 3 discusses synthetic household data generated at the block 
groups level and household locating process and how the data are used for estimating 
individual household’s PHEV choice behavior. Section 4 presents the agent-based 
simulation platform for modeling the households in the Knox County and the PHEV 
ownership. This section also discusses the imbalanced PHEV ownership distribution and 
the existing of local PHEV hot zones. Section 5 deals with the potential PHEV charging 
impact because of the imbalanced PHEV ownership distribution in the local area. Section 
6 discusses the model verification and validation and final conclusions are given in 
Section 7.     
 
2. PHEV ownership distribution model 
 

Existing PHEV adoption models and market penetration models provide an estimate 
of future PHEV market share and percentage of total vehicle at the national level. There 
are no published research efforts that can provide a PHEV ownership distribution model 
at the local residential household level. To understand the PHEV charging load impact on 
a local residential distribution network, it is necessary to build a PHEV ownership 
distribution model at the local household level. The PHEV ownership distribution pattern 
of a residential community is a group phenomena determined by the choice behavior of 
individual households for new vehicle selection. Since different demographic attributes 
of individual household can affect the household PHEV purchase decision, the 
probability of an individual household to choose PHEV as their next new vehicle may be 
different. There is a research needed to build a PHEV ownership distribution model at the 
macro level from the individual household’s PHEV choice at local level.  

A growing realization across the social sciences is that one of the best ways to build 
useful theories of group phenomena is to create computational models of social units (e.g., 
individuals, households, firms, or nations) and their interactions, and observe the global 
structures produced by their interactions. ABM and its computer simulation of human 
behavioral and social phenomena is a successful and rapidly growing interdisciplinary 
area. The ABM is a new approach that aims to model the complex social macro dynamic 
behaviors emerging from the interactions of autonomous and interdependent individual 
actors. ABM builds social structures from the ‘bottom-up’ by simulating individuals with 
virtual agents, and creating emerging organizations from the operation of rules that 
govern interactions among agents (Bonabeau, 2002).  

Like many other social phenomena, PHEV household adoption or ownership 
distribution has a spatial-temporal dimension and involves dynamic decisions made by 
individuals. Our research effort uses an agent-based model to combine household 
demographic information in Knox County, TN with nationwide vehicles sale, cost and 
energy cost prediction data from U.S. Energy Information Administration (EIA)’s Annual 
Energy Outlook (AEO) 2010 report (DOE, 2005) for generating the possible PHEV 
ownership distribution in Knox County households for the time period of 2011 – 2020. 



The model offers deeper understanding of how various factors at the household level 
shape PHEV distribution and charging patterns in electric distribution network.  

In the ABM simulation approach, the households are not treated in the same manner 
when choosing their new vehicle. Each household will have different tastes and 
preferences in terms of performance, energy efficiency, price, cargo space or seating 
available, etc. In general, the ABM model offers a simplified representation of reality by 
attempting to capture the most important elements of the phenomenon under study. We 
use a few simple, theory-based rules to guide the behavior and decision of the individual 
agents. The interactions of individual households in the model produce the emerging 
PHEV ownership patterns. In addition, individual households in the ABM are able to 
make dynamic decisions based on changing information, such as gasoline price, existing 
PHEV ownership, government policies, etc. In the agent-based household PHEV 
ownership distribution model, we have integrated the ORNL consumer choice model (Lin 
and Greene, 2010), University of Michigan’s UMTRI model (Sullivan et al., 2009) for 
estimating the time when consumer start searching for a new car and a new stigmergy-
based neighborhood effect model (Cui et al., 2009) for estimating the probability of 
consumer’s selection for different PHEV.  

The ORNL model is used for estimating the consumer’s vehicle choice probability 
based on consumer’s attributes, the cost and performance of the vehicle, gasoline and 
other energy cost, and the government policies. The core of the ORNL model is the 
Nested Multinomial Logit (NMNL) module that estimates the users’ choice probability 
on 13 different kinds of advanced vehicle technology. In the ORNL model, the U.S. 
market is divided into 1458 market segments and the total market share of different 
technologies is aggregated from the market segments into the national level. The model is 
capable of estimating the consumer’s vehicle choice probability results from 2005 – 2020. 
Since our interest is estimating the ownership distribution of different kinds of PHEV and 
their impact on local community power supply, we used four different categories to 
represent the domain of advanced vehicles consumer can choose from (i.e., PHEV-10, 
PHEV-20, PHEV-40 and others, which include HEV and traditional Internal Combustion 
Engine (ICE) vehicles) rather than using 13 advanced vehicle technologies listed in the 
original model. This consumer choice model is used as the individual agent decision rule 
for selecting the vehicle from available PHEV choices. The model can be represented in 
following mathematical equations. 
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where, 
i: the household index 
j: the vehicle index 
k: the index of all other vehicles 
a: the index of observed household and vehicle attributes 
A: the total household attributes that have correlation with the probability of consumer’s 
decision for choosing vehicle j 

ax : the attributes of household and vehicle 



β : the parameter determining the impact fact of the different vehicle attributes to 
consumer’s choosing. 
    

On the other hand, the consumer transportation budgets serve a major role in UMTRI 
model for estimating the time when agents start to actively search for a new vehicle. 
According to the description of UMTRI model, all consumers will stay within their 
Consumer transportation budgets. Consumer transportation budgets are comprised of 
fixed and variable terms as follows:  
 

Budget = C1 + C2 + C3                (2) 
 
where, 
C1: the monthly vehicle payment 
C2: the monthly fuel cost 
C3: the vehicle maintenance cost. 
 

In our agent-based household PHEV ownership distribution model, the UMTRI 
model is used for modeling the agent household’s decision to buy another car. For every 
time period, the household agents will review their transportation budget status and 
decide whether or not it is time to buy another vehicle.  

The additional model we added for consumer vehicle choosing model is 
“neighborhood effect”. Recent research (Eppstein et al., 2010; Sullivan et al., 2009) has 
used the neighborhood effect as one attribute for predicting the consumer’s vehicle 
choice. But how the “neighborhood effect” numerically contributes on the consumer’s 
decision for their new vehicle is still an un-answered question. In bio-inspired computing 
area, the “neighborhood effect” has been explored for decades and a different term 
“stigmergy” is used. The stigmergy term was first proposed by Pierre-Paul Grasse in the 
1950s in conjunction with his research on termites (Cui et al., 2009). The concept of 
stigmergy provides a theory for explaining how individual’s behavior or contribution 
causes indirect effects on other adjacent individual behavior. Because of space limitations, 
please refer to (Cui et al., 2009) for detail. The mathematical equation we used for 
numerically computing the individual behavior or contribution is described in Equations 
(3), (4), and (5). 
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dP  is the positive effect for one kind of vehicle. For this kind of vehicle ownership in 

neighborhood or other social network connected by areas, the positive effect dP  is 
incremented by a constant, γ, as shown in Equation (3). At the same time, the positive 



effect dP  will decay as time passes. The decay rate 
τε −

 will be applied on dP  every time 

cycle as shown in Equation (4). Equation (5) describes the vehicle d ’s probability dρ  of 
being chosen. N is the total number of forum threads. The constants F and K are used to 
tune the consumer’s vehicle selection behaviors. 

The agent in this ABM represents individual households that have different attributes. 
The combination of the three decision models described above will help each agent make 
an independent choice about whether to buy a PHEV or not and to buy what kind of 
PHEV. If each agent household is geo-located, the global behavior about the community 
PHEV ownership distribution can be generated from the interaction and independent 
decision of individual agents in the simulation.  

Accurately generating PHEV ownership distribution in a local community needs high 
fidelity household characteristics and individual locations that can be used in the ABM 
simulation for estimating each individual household (agent) vehicle choice behavior. The 
high fidelity input data for agent-based simulation is the first level of guaranty for the 
simulation to generate useful results. Without some degree of accurate input data, no 
model can generate predictive results that can be used to support decision making. 
Collecting the individual household characteristics and location information of the 
targeted community is extremely important for understanding the local community PHEV 
distribution and their impact on local electric distribution network.  Nevertheless, due to 
high survey costs, low response rate and privacy concerns, detailed household and 
personal characteristics and their location are usually unavailable. One solution is using 
population synthesizers to reconstruct methodologically rigorous estimates of household 
characteristics and their location from survey data and high-resolution geospatial data, 
such as Public Use Microdata Sample (PUMS) (ACS, 2010), Census Summary Files 3 
(SF3) (U.S.CensusBureau, 2003), Census Transportation Planning Products (CTPP) 
(U.S.DOT, 2011) and LandScan USA (Bhaduri et al., 2002). 

In the next section, we will briefly describe a copula-based household synthesizer and 
microscopic location process that are designed to preserve the inter-variable dependence 
structure among survey samples and place the synthetic households in the specific 
location, respectively. The synthesized households generated from our research results in 
the same local SF3 statistics at each block group while having similar inter-variable 
correlations as described in the PUMS and are distributed in the study area.       
 
3. Synthetic household characteristics and locating process 
 

Most of simulations suffer from a shortage of accurate data of local residency. 
Without accurate data, the usability of the results generated from the simulation is limited. 
The first step will be allocating local household data for the simulation. In this paper, the 
virtual Knox County households are generated from our unique copula-based household 
synthesizer, in which the households have the same attributes with known local 
distributions (i.e., SF3 statistics) at each census block groups while having similar inter-
variable correlations as observed in the PUMS and distributed throughout the study area 
by integrating LandScan USA.   

Our copula-based virtual household synthesizer is based on detailed demographic 
samples from PUMS that are based on a 5% sampling rate and are grouped in 



geographical units named Public Use Microdata Areas (PUMAs). The PUMA is 
determined in a way that it must contain approximately 10,000 households from a 
population of 200,000, so the privacy of each survey respondent is well-protected. 
However, it also results in coarse spatial extent and hence is a disadvantage for regional-
specific studies. Local summary tables are obtained from SF3, which are in the 
geographical units called Block Groups (BGs). The SF3 information is based on the 
Census long forms (16.7% sampling rate) and further adjusted by short forms data (100% 
sampling rate). Therefore, the summary information is deemed the most accurate public 
demographic statistics. In this paper, the copula-based virtual households are derived 
from PUMS and then locally fitted to SF3 summaries. 

Figure 1 shows the study area (Knox County, TN) with 234 BGs and three PUMAs 
(i.e., 01301, 01302, and 01400). Since the PUMA and BGs boundaries are not always co-
located in Knox County, when one BG corresponds to multiple PUMAs, it is assigned to 
the largest PUMA for simplification. Overall, 190,965 virtual households (368,666 
members) are synthesized. Considering PHEV purchasing and usage, several potentially 
relevant household demographic variables are extracted, including:  
 

1X :  Household total income in 1999 (HINC, units in $). 

2X :  Number of household member (PERSONS) 

3X :  Number of workers (WIF) 

4X :  Number of vehicles (VEHICLE) 

5X :  Household highest educational attainment (EDUCmax, unit in Census education 
attainment index), derived from individual records. 

6X : Household total travel time to work (TRVTIMEsum, unit in munites), derived 
from individual records. 
 

Since the household is assumed to be the decision-making unit for PHEV purchasing, 
only family and non-family households are considered in this paper (i.e., group quarters 
are excluded). For each PUMA, a unique copula-based synthesizer is constructed. 
Copulas have been a novel statistical tool that can be applied to construct 
multidimensional probability model with arbitrary marginal distributions in a flexible 
manner. Recently application of copulas in transportation can be found in (Spissu et al., 

2009). The marginal distributions 
)( jXj xFu

j
=

, 6,...,1=j  are derived by non-parametric 
kernel density functions, in which the discrete-continuous transformation is considered 
for PERSON, WIF, VEHICLE, and EDUCmax. The correlation matrix Σ  is computed 
by Spearman’s r , and then corrected for formatting issues (tolerance ε  set to be 0.002). 

The Gaussian copulas dUUC ,...,1  are then used to synthesize virtual households. 
 
Figure 1 Illustration of 3 PUMAs and 234 BGs in the Knox County. 
 

At the local level, SF3 summaries for each BGs are collected and treated as 
constraints. However, it should be noted that not every variable has a corresponding local 
summary and some variables have different universes (HINC and PERSONS: total 



households, WIF: total families and VEHICLE: total occupied housing units). In order to 
avoid making extraneous assumptions, we only take HINC and PERSONS summaries as 
the two local constraints in this case study. Following the local fitting procedures, virtual 
households are assigned for each BGs. 

However, since the minimum spatial resolution dealt with by the household 
synthesizer is the block groups, it might be difficult to study the microscopic spatial 
distribution of PHEV in the block groups. Thus, another procedure to place individual 
synthetic households at the specific map coordinates has been developed, employing the 
personal travel time data of workers to work from SF3, number of workers commuting 
between census tracks from CTPP, and high resolution (90m) population distribution data 
with LandScan USA. 

In brief, this study went through empirical cumulative distribution function (ECDF) 
to synthesize the individual travel times and assigned them to individual block groups 
based on the proportion of number of workers residing in each block groups of the 
corresponding census track. After identifying LandScan USA points and night time 
population associated with individual block groups, workers are given specified map 
coordinates and combined to form a household in a compliance with the synthetic 
household demographic information like number of workers in a household with a 
constraint that the derived number of workers cannot be over the night time population. 
Figure 2 illustrates the Knox County virtual household distribution. Each dot in the 
Figure 2 represents virtual synthetic households generated through copula-based 
synthetic population reconstruction approach and household locating process. Further 
discussion of the copula-based population synthesizer and locating process will be 
provided in authors’ other papers. 
 
Figure 2 Knox County virtual household distribution. 
 
4. The ABM simulation platform  
 

There are many widely used platforms for ABM simulation: MASON, NetLogo, 
Repast, and Swarm. We used the NetLogo (Tisue, 2004) multi-agent simulation tool to 
develop our model primarily because it is freely available on the web, well documented 
and supported. In this tool, agents move around in a virtual world and interact with other 
agents. There is no centralized control or coordination of the agents’ actions. Agents are 
responsible for maintaining their own state. The NetLogo virtual world consists of a grid 
of ‘patches’, each of which can have a state and agents having only local knowledge 
about their surroundings. Both agents and patches are active agents in the simulation, 
performing actions and asking other agents to perform other actions. The simulation 
proceeds by each agent and patch repeating its behavior independently, often by 
following stochastic functions influenced by the agent’s state and local environment. 
Agents perform their own actions asynchronously and as rapidly as they can. In an agent-
based simulation, the overall behavior of the system is an emerging property of the 
individual, independent interactions of the agents.  

Figure 3 depicts the proposed household PHEV distribution simulation platform. One 
agent represents one household. Each household agent is created with certain attributes 
extracted from the synthetic household data discussed in Section 3. Each agent has 



specific rules of behavior to determine how the households select when and what kind of 
PHEV. There are total 190,965 households in the Knox County, which means 190,965 
agents are created in this simulation platform. Once all agents are initialized, the model 
proceeds according to internal clocks. Essentially, all agents are engaged in PHEV 
selection activity during each period (1 calendar month). Simulated household and its geo 
locations, as well as the current status of the vehicle (such as the age of vehicle, the 
mileage, etc.) are updated each simulation period (1 calendar month). 
 
Figure 3 Household PHEV distribution simulation. 
 
5. Experimental design and results  
 
5.1 PHEV ownership distribution in census block groups 
 

We used the two scenarios, Base Case and FreedomCARGoals Case defined in (Lin 
and Greene, 2010), to illustrate the different household PHEV distributions in the Knox 
County. The same energy prices are used in the two cases. We used the output of (Lin 
and Greene, 2010) for PHEV distribution model calibration to confirm that the proposed 
model generates similar total estimated PHEV sales each year from 2011 to 2020. We 
aggregated the individual household PHEV based on the census block group (i.e., 234 
BGs in the Knox County) in which individual households are located. By using PHEV 
ownership distribution model and the synthetic household data, we are able to estimate 
the vehicle type for each household in each simulation month. For demonstrating the 
PHEV distribution in the local community and discovering the “PHEV hot zone” 
(defined as the highest PHEV ownership concentration), we aggregated the individual 
household PHEV based on the BGs in which individual households are located. The 
estimated distribution of the PHEV in Knox County for the year of 2020 based on two 
different scenarios can be shown in Figure 4. Although there are 4 choices each 
household can make (PHEV-10, PHEV-20, PHEV-40, and Others), since our major 
concern is how many PHEV ownership in the area, we only display the distribution of the 
PHEV ownership in Figure 4. The height of the bars in different BGs represents the total 
number of PHEVs in the corresponding BGs. The longer the bar is, the more PHEVs are 
in the corresponding BGs. As shown in Figure 4, the FreedomCARGoals scenario will 
have a higher PHEV market penetration than Base Case. However, both have very 
similar PHEV distribution patterns in Knox County; that is, both scenarios indicate that 
the southwest portion of the county (which is the Town of Farragut) will have the highest 
PHEV concentration. This area is considered as the “PHEV hot zone”. We also noticed 
that the number of PHEV-40 ownership within Base Scenario is higher than PHEV-40 
number within FreedomCARGoals scenario. The possible reason is because under the 
FreedomCARGoals scenario, more households are capable and willing to buy basic level 
PHEV vehicle, PHEV-10. Because of the neighborhood effect, more households are 
attracted to buy PHEV-10 instead of PHEV-40 which is more expensive than PHEV-10.   
 
(a) Base Scenario 
(b) FreedomCARGoals Scenario 
Figure 4 PHEV distributions for Basic and FreedomCARGoals scenarios (2020).  



 
5.2 PHEV impact on local electric distribution network 
 

By using the PHEV residence ownership distribution result for the 
FreedomCARGoals Scenario generated from above experiment, we are able to conduct 
preliminary analysis of the PHEV battery charge load impact on local electric distribution 
network. According to our simulation output, the total PHEVs within FreedomCARGoals 
Scenario will reach 8,192 in 2020 in the Knox County. The most often used method for 
estimating the impact of the PHEV on the power grid is the worst case scenario, implying 
that all PHEVs will plug in simultaneously for battery charging during the grid peak time. 
If each PHEV will consume 1.45Kw during its battery charging, the peak load for all 
PHEVs in Knox County will be 11,878Kw. However, in most cases, because different 
PHEV drivers will have different travel patterns and charge time schedules, the 
maximum possible total load pattern for uncontrolled evening charging will be similar to 
Figure 5. In this scenario, it is reasonable to assume that the vehicle owner begins 
charging the vehicle upon arriving at work in the morning and upon returning home from 
work. The black area represents the charge load at work and gray area indicates the total 
load while at driver’s residence. Charging start times are decided by the PHEV driver’s 
commute time from work to home and from home to work. Three different types of 
PHEV (i.e., PHEV-10, PHEV-20 and PHEV-40) need to be charged from 2 to 6 
continuous hours, respectively.  

The census block groups 46, 57, 58 and 62, out of total 234 BGs in Knox County, 
have the highest estimated PHEV ownership distribution in the FreedomCARGoals 
Scenario. The total PHEVs in these four BGs are 2,670. According to our simulation 
output, the evening peak charging load for these four BGs can reach 3,625Kw, which is 
32.6% of total PHEV charging load generated by the PHEV fleet in the Knox County. 
These BGs can be considered as the “PHEV hot zones” which could increase peak 
demand locally and require utilities to upgrade the electric distribution infrastructure in 
the near future. 
  
Figure 5 The charging load for uncontrolled PHEV charging system. 
 
6. Model validation discussion 
 

This paper proposed an agent-based framework for simulating local community 
household PHEV distribution and electric network impact. Several models are used in 
this framework. All models need to be validated before it can be accepted and used to 
support decision making. Because of the heterogeneity of the agents and the possibility of 
new patterns of macro behavior emerging as a result of agent interactions at the micro 
level, model validation in agent-based complex social systems is different from the 
traditional validation (Axtell et al., 1996; Fagiolo et al., 2007; IEEE, 1998; Midgley et al., 
2007; Moss, 2008; Moss and Edmonds, 2005). For this research, we are conducting two 
additional stages of model validation, corresponding to the two levels at which agent-
based models exhibit behavior: the micro level and the macro level. The first stage is the 
micro-validation of the behavior of the individual agents in the proposed model. In the 
simulation, agents are simplified and general representations, not replications of specific 



human individuals. The simplicity and generality reduces the ambiguity of any analysis 
of their behavior and social interaction at the cost of losing expressiveness relative to 
qualitative studies of observed actors. The only behavior we implemented in the agent is 
vehicle choice behavior model adopted from existing publication which has been 
partially validated. The synthetic household data employed by the proposed simulation 
framework to generate estimated results has proven to have the same local SF3 statistics 
at each block group while having similar inter-variable correlations as described in the 
PUMS.  

The second stage is macro-validation of the model’s aggregate or emerging behavior 
when individual agents interact. We will compare the macro results of our agent-based 
model results with mathematical model results by using method addressed in (Bankes, 
1993; Macal and North, 2005; Sargent, 2005). There already exist many mathematical 
models for estimating the PHEV market penetration at the national level. These provide 
for comparison of the result from our model with the result from these mathematical 
models. However, our framework mainly focuses on estimating the probability of a local 
community’s PHEV penetration rate instead of national level. Our next research goal will 
be applying our agent-based framework to every county in the country and simulating the 
household PHEV distribution of these counties. Aggregation of the results will be the 
national level PHEV penetration and can be used for direct comparison with the results of 
mathematical models (Moss and Edmonds, 2005).  
 
7. Conclusions 
 

In this paper, we have presented an agent-based simulation framework for modeling 
the spatial distribution of PHEV ownership in a local residential area and evaluating the 
impacts of PHEVs charging load on the residential electric distribution network. Our 
approach for generating synthetic household characteristics and locating them is 
described. Knox County, TN is used as a case study to show the simulation results of the 
proposed ABM framework. The variation of household attributes such as income, travel 
distance, age, household member, and education, for different residential areas may 
generate different PHEV market penetration rates. Residential neighborhoods, where 
multiple PHEV consumers share a given circuit to recharge their plug-in vehicles, could 
increase peak demand locally and require utilities to upgrade the distribution 
infrastructure.  

Estimating the future PHEV ownership distribution in the residential area can help us 
understand the impact of a PHEV fleet on electric line congestions, transformer overloads 
and other unforeseen problems at the local residential distribution network level. It can 
also help utilities manage the timing of recharging demand to maximize load factors and 
utilization of existing distribution resources. The current simulation is purely based on 
statistical data for estimating the adoption rate of the PHEV. Our next step will integrate 
this simulation with power systems simulations and a transportation simulation to study 
the impacts.  
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