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ABSTRACT

Effective visual analysis of computer network defense (CND) information is challenging due to the volume and
complexity of both the raw and analyzed network data. A typical CND is comprised of multiple niche intrusion
detection tools, each of which performs network data analysis and produces a unique alerting output. The
state-of-the-practice in the situational awareness of CND data is the prevalent use of custom-developed scripts
by Information Technology (IT) professionals to retrieve, organize, and understand potential threat events. We
propose a new visual analytics framework, called the Oak Ridge Cyber Analytics (ORCA) system, for CND
data that allows an operator to interact with all detection tool outputs simultaneously. Aggregated alert events
are presented in multiple coordinated views with timeline, cluster, and swarm model analysis displays. These
displays are complemented with both supervised and semi-supervised machine learning classifiers. The intent of
the visual analytics framework is to improve CND situational awareness, to enable an analyst to quickly navigate
and analyze thousands of detected events, and to combine sophisticated data analysis techniques with interactive
visualization such that patterns of anomalous activities may be more easily identified and investigated.
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1. INTRODUCTION

The establishment and maintenance of a secure computing environment is a common goal in both government and
industry. Organizations rely on the Internet for efficient access to distributed information resources and services,
but by allowing that access, they expose their infrastructure to the possibility of intrusion and exploitation.
Typically, an enterprise will defend itself by implementing a collection of components designed to prevent and
detect attacks. It is usually the role of an organization’s Information Technology (IT) office to select, configure,
operate, and maintain a cyber security toolset, or system of components, to establish a cyber defense appropriate
to the information assurance needs.

Due to the complexity and broad range of cyber attacks, implementing a comprehensive intrusion detection
solution is largely unrealistic. As a result, several niche tools and systems exist that are focused on a particular
type of attack or on very specific aspects of the computing environment such as network traffic, communication
protocols, host activity, and application-specific protocols. An organizations intrusion detection capability is
considered more comprehensive and effective if several variations of IDS components are deployed. The weakness
in this approach is that the organization has no unifying analysis of the CND system. That is, each niche tool
provides insight into one single aspect of the spectrum of possible cyber security issues, but there is little
capability to correlate data across tools or to unify data for a truly comprehensive view. This is compounded
when the performance of common IDS tools trends towards high error rates as is typically reported.1

The multi-modal, multi-source data produced by a CND is typically comprised of intrusion detection system
alerts, system log messages, and network monitor alarms. Each of these outputs has its own format, reporting
method, and alerting frequency. A significant challenge for cyber security system developers is the presentation
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of this information to an operator for rapid understanding and analysis. Operators must be able to quickly
disposition alerts and events in order to respond to attacks effectively and reliably discern real threats from
anomalous use.

This paper describes the Oak Ridge Cyber Analytics (ORCA) system, which addresses technology gaps in
the aggregation and presentation of cyber security data for situational awareness. The ORCA system collects
cyber security data from multiple IDS and metric collectors, combines the data into a common representation,
and applies advanced analysis techniques, such as semi-supervised machine learning, data clustering, raw text
categorization, and swarm intelligence, to the collected data. The purpose of the ORCA visualization is to
provide a decision support environment where an analyst can easily identify, investigate, and discover attack
patterns in the data. The ORCA system is an adaptive solution for the identification, analysis, modeling, and
risk assessment of cyber security events.

ORCA has been developed as a Adobe R©Flex interface that utilizes the Adobe R©BlazeDS remote Java object
application server system. This Rich Internet Application (RIA) provides the visualization and control compo-
nents that facilitate intuitive analysis of the data. In this paper, we will describe the visualization techniques
that have been incorporated into ORCA to improve the cyber security data analysis.

2. RELATED WORK

The visualization of cyber security data is a relatively new extension of visual analytics, with most of the
research having been produced in the last decade. The diversity of cyber security data products has resulted
in a wide variety of methods for highlighting anomalous security events and providing situational awareness.
Approaches such as visualization of network traffic payloads,2 presenting unique network connections using
parallel coordinates,3 and radial charts to summarize alert traffic4 are a few examples. In terms of network
situational awareness, both the IDS Rainstorm5 and SIFT6 tools present the state of an organization’s networks
and connections in order to aid an operator’s understanding and provide decision support.

The visualization approach taken for ORCA differs from these prior works in several ways. ORCA does
not attempt to visualize the raw IDS output, but visualizes fused output. IDS alert data is aggregated and
several analytics are applied prior to visualization. This method is an advantage in decision support because the
operator can leverage the more comprehensive pattern searching capability provided by the underlying analytics,
resulting in a more rapid diagnosis of threats. ORCA also provides multiple coordinated analytic views of the
same fused data set, allowing for the exploration of the data through its interactive components, giving the
operator a broader situational overview of anomalous patterns.

ORCA uses several different supervised and unsupervised learning approaches as the basis for its analytic
toolset, and then leverages existing visual components to present that information. For example, the sunburst
diagram used to present clustered alert text in ORCA utilizes a radial space-filling (RSF) tree layout as im-
plemented in the prefuse flare library.7 This layout is from the radial graph-drawing family of visualization
techniques, which have appeared previously in the visualization research literature. In particular, the approach
is related to the semi-circular RSF hierarchies of Information Slices8 and the focus+context interaction techniques
for fully circular Sunburst visualizations.9 By adding support for brushing and interactive radial distortion, the
InterRing10 visualization expands RSF tree interaction techniques. More recently, Docuburst11 combines RSF
visualization and said interaction capabilities to represent text document content for drill down analysis.

3. ORCA ARCHITECTURAL OVERVIEW

Architecturally, ORCA is a combination of custom-built and third-party software focused on aggregating the
cyber security data from various sources. Network alerts and log files are produced by commercial IDS tools,
analysis tools, and logging mechanisms. These alerts and logs are aggregated in an off-the-shelf data warehouse
product called Splunk.12 ORCA queries Splunk periodically in order to determine when new alerts have been
generated by the CND enclave.

In addition to accessing alert data through Splunk, ORCA also includes a custom-developed package that
maintains network traffic statistics and metrics, based largely on the metrics provided as part of the KDD



99 dataset∗. There are two levels of statistics tracked: interface-level statistics and connection-level statistics.
Interface-level statistics summarize all activity detected on the network interface. Connection-level statistics are
tracked for each unique connection detected on the network interface. The alert data and network statistics
are fused to provide a broad set of information upon which the various ORCA analytics can perform advanced
computation and processing on the collection of cyber events.

ORCA is comprised of several analytic components to provide the basis for its visualizations. The Temporal
Analysis component provides a time-based and connection-based view of the events relative to each other. The
Cluster Analysis applies raw text analysis and clustering algorithms to provide a hierarchical organization of
the events. The Particle Swarm Optimizer analyzes behavior patterns over time to highlight behaviors that are
consistent with known attack patterns. ORCA Categorization automatically classifies alerts produced by the
various IDS sources based on two different appraoches: text classification using the terms and phrases in the
alert text, and semi-supervised machine learning which classifies based on the network statistics.

(a) (b)

Figure 1. The ORCA Correlation Engine (a) configuration view provides access to the Engine Selector, Data Configuration,
Engine Configuration, and Alert Display. The ORCA Analysis Engine (b) configuration view gives the analyst the ability
to specify a range of events in the Search Area. This view also provides an Analysis Area toolbar that shows the available
analysis methods for the retrieved data.

ORCA offers an intuitive user interface for interaction with its analytic components. The Correlation Engine
view shown in Fig. 1(a) provides controls for the real-time components of ORCA that acquire and aggregate the
CND data. The Engine Configuration Panel provides the different options for configuring and controlling it’s
near-real-time fusion engine. The Data Configuration panel allows the user to identify the data store to use for
correlation and also provides the control for initiating and terminating the Network Feature Extractor. The Alert
Display area lists the events that the Correlation Engine has determined are most similar to an attack pattern.

The Analysis Engine view is shown in Fig. 1(b). The Search Area gives the analyst the ability to specify a
range of events to retrieve from the data store. The Analysis Area is the space where the coordinated analytic
views, operating on the retrieved data, are presented. A toolbar allows an operator to switch between views and
interact with a different analytic component. Each of these analytic components are discussed in the sections
below.

∗http://www.ll.mit.edu/IST/ideval/data/1999/1999 data index.html



Figure 2. ORCA’s cyber event cluster analysis view.

4. CYBER EVENT CLUSTER ANALYSIS

The ORCA cluster analysis view (see Fig. 2) applies raw text analysis and clustering algorithms to the textual
alert information yielding a hierarchical view of the alerts. The cluster analysis panel arranges the cyber events
in terms of similarity within a Sunburst diagram, with the center being the point of no similarity and the outer
ring being the highest similarities. Each gray band displayed outside of the center circle represents a collection
of cyber events that are similar as determined by user-defined similarity threshold values. These gray summary
bands can be selected with a mouse click by the analyst to include or exclude a collection from the analysis view.

The cluster analysis provides a frequency-based view of the cyber events, showing groupings of similar events
across the spectrum of retrieved events. The analyst uses this view to visualize the distribution of events across
categories and in terms of the event text. Events that are dissimilar to the rest of the events are quickly
highlighted through a lack of grouping. Furthermore, the cluster view provides analytic interaction with the
data behind the visualization. A mouse-over operation of both events and event collections provide summary
statistics via a details pop-up panel. The operator may also select different collections to highlight or eliminate
them from the view. Additionally, the operator may bring up the details on a specific cyber event. The cluster
view facilitates rapid exploration of the thousands of alerts thereby streamlining the identification of significant
subsets of information for deeper investigation.

5. SWARM ANALYSIS

Swarm analysis is the application of nature-inspired algorithms for determining similarity. In swarm analysis,
data are represented as particles in a space, with each particle defined by a set of attributes. A simulation is run
whereby particles are moved randomly about the space and group, or flock, with other particles based on the
similarity of their respective attributes. Our implementation of swarm analysis algorithms applied to the cyber
security data leverages multiple visual models to supply the users a full view of current behavioral status. It is
intended for enterprise-level cyber security information comprehension. The following subsections describe the
various developed swarm analysis models.



5.1 Event Only Model

In the event-only model (see Fig. 3), each alert event is represented as one dot in the visual space, and charac-
terized by its alert text features. To aid in the representation, the system assigns randomly generated colors for
each unique alert event. Using the flocking algorithm13 as the basis for determining similarity, all alert events
quickly self-organize into multiple groups. The alert events that swarm together are events that are similar to
each other. This representation offers the analyst an overview of the diversity in the behavior patterns. Unique
alert events are ones that do not group with other events and therefore may be a focal point for investigation.
The configuration shown in Fig. 3 indicates that although the system has received thousands of alert events,
there are about 10 to 12 different behaviors and most events can be attributed to one of the similar behaviors. By
moving the mouse over a dot, the system will automatically display the detail information about the associated
alert event. The system also provides an interface for adjusting the parameters of the particles movement.

(a) (b)

Figure 3. Event-only swarm model visualizations (a) at the start of the swarm analysis with all events randomly placed
in the space, and (b) after swarming with similar events grouping together.

5.2 Simultaneous Attack Discovery Model

In this model, the system focuses on analysis of each individual IP addresss attacking behavior. We hypoth-
esize that some attackers or hacking organizations might launch simultaneous cyber attacks on a government
organization from different machines with different IP addresses. Although the attacks are launched on different
machines, the attack strategies, methods, and tools are most likely the same. The alert sequences triggered by
those different IP address should be similar. These alert sequences can be considered as the attacking behavior
of the IP address. In Fig. 4, each colored dot represents one single IP address and tits associated alert patterns
over time. The applied swarm algorithm groups IP addresses with similar alerting behaviors. If one group
in the system appears significantly larger than other groups, it can indicate that the organization is under a
simultaneous attack from different IP addresses.

5.3 Historical Behavior Discovery Model

Most experienced criminals have a pattern when they conduct a crime, and the same holds with the cyber
attacker. They tend to use similar methods or tools to conduct an attack on different machines. We can
analyze the historical data to build different kinds of attacker behavior models and compare those models with
current data in order to find the similarities. In Fig. 5, each colored dot represents one single IP address and the
behaviors this IP address has exhibited in recent time. The black dots represent various attacker behavior models



(a) (b)

Figure 4. Simultaneous attack swarm discovery model visualizations (a) at the start of the swarm analysis with all Source
IP address behaviors represented as unique dots and randomly placed in the space, and (b) after swarming with similar
source IP behaviors grouping together.

constructed from the historical data. When the colored dots group with a black dot, it indicates that the source
IP address represented by that colored dot is behaving similar to attack behaviors described in the historical
data sets. This information provides an investigative focus for operators, as the analytics have highlighted a
pattern consistent with known malicious behavior and attributed it to a specific IP address.

(a) (b)

Figure 5. Historical behavior swarm discovery model visualizations (a) at the start of the swarm analysis with all Source
IP address behaviors and malicious behaviors (black dots) randomly placed in the space, and (b) after swarming with
some source IP behaviors grouping with known malicious behaviors.



Figure 6. Temporal cyber event viewer.

6. TEMPORAL ANALYSIS

The Event Viewer is an ORCA tool that presents the temporal pattern of events. Fig. 6 shows the Event Viewer
and its graphical representation of several cyber events. The Event Viewer is a two-dimensional graph, with the
x-axis representing time and the y-axis representing unique source-destination connections. Each Cyber Event
is represented as a small, semi-transparent circle in the graph space, aligned vertically with the connection on
which the event occurred and horizontally with the time that the event occurred. The Cyber Events are also
color-coded according to the raw text categorization of the event. The legend for this categorization is displayed
on the right-hand side of the display.

7. EVENT CATEGORIZATION

The Categorization View displays the distribution of both the categorized and classified cyber security events.
We use the term categorization to refer to the application of a text classifier, and the term classification to
refer to the application of a machine learner on network statistics. Events are categorized by comparing the
similarity of the terms and phrases in the alert text with the terms and phrases in user-defined categories. Each
event gets assigned the category for which it has the highest computed similarity value. The distribution of
categorized events is displayed in a pie chart on the Categorization panel as shown in Fig 7(a). The categories
can be hand-edited by an operator from the Categorization panel. Unlike existing approaches, this method can
be run autonomously and periodically in order to maintain a current profile of categorized alerts for a networked
environment.

In addition to the distribution of categorized events, the Categorization panel provides visibility into the
machine learners classification of the events, as shown in Fig 7(b). Each analyzed event is processed by the semi-
supervised machine learning algorithm and placed into a class based on the collected network statistics associated
with that event. The Categorization view provides a pie chart display that summarizes the distribution of these
classes, or labels, for all retrieved events. The Categorization View is useful for visualizing the frequency of
categories and classes of alerts, and thus provides an analyst with a rapid sense of the types of events being
processed.



(a) (b)

Figure 7. ORCA Event Categorization view showing (a) a distribution of alerts categorized with the text classifier, and
(b) a distribution of alerts classified using the semi-supervised machine learner.

8. EVENT LABELING AND CATEGORIZATION INFRASTRUCTURE

The ORCA Analysis Engine provides an environment where an operator can explore and interact with the cyber
security data in order to identify patterns and potential attack behaviors from the data. However, in order
to persist the knowledge gained from the operators analysis, a feedback mechanism must exist such that the
ORCA toolset adapts to the new information. ORCA includes the ability for operators to label and categorize
events from the Analysis Engine such that these inputs will persist. Labeling an event will associate a name
with the event that is used as example data when training the machine learning classifiers. From an operational
perspective, this means that an operator can identify a previously unseen attack pattern in the data, label the
appropriate events as an example of that attack pattern, and have the machine learner use that example to
detect that pattern of attack the next time it is seen. The same capability exists for categorization of terms
and phrases in an event. The operator may designate a collection of events for categorization and the selected
category will be updated with the terms and phrases from the alert, allowing for an adjusted categorization on
the next pass.

9. CONCLUSION

In this paper, we presented several new approaches to visualizing CND data in order to provide situational
awareness for IT system operators, and a means for interactive exploration. The Temporal Analysis and Cluster
Analysis reveal patterns in real-time alert data, both in terms of their connections and timing, and the alert
text themselves. The incorporation of Swarm Analysis provide a means to interact with CND data to discover
patterns in experienced alerts. The Categorization view applied two different classifiers to fused event data to
visualize the distribution of categories of information. The volume and complexity of cyber security data demands
a visual environment that does not just present the data, but presents it through analytics in order to highlight
patterns of potential interest. This work is intended as a step towards more reliable situational awareness in
CND, where processed information is reliable presented such that human operators can make informed response
decisions.
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