
The GPU Enhanced Parallel Computing for Large Scale Data Clustering

Xiaohui Cui
Oak Ridge National Laboratory

Oak Ridge
TN 37831

cuix@ornl.gov

Jesse St. Charles
Carnegie Mellon University

Pittsburgh
PA 15213

jessestcharles@gmail.com

Justin Beaver
Oak Ridge National Laboratory

Oak Ridge
TN 37831

beaverjm@ornl.gov

Thomas E. Potok
Oak Ridge National Laboratory

Oak Ridge
TN 37831

potokte@ornl.gov

Abstract

Analyzing and clustering large scale data set is a com-
plex problem. One explored method of solving this prob-
lem borrows from nature, imitating the flocking behavior of
birds. One limitation of this method of data clustering is
its complexity O(n2). As the number of data and feature
dimensions grows, it becomes increasingly difficult to gen-
erate results in a reasonable amount of time. In the last
few years, the graphics processing unit (GPU) has received
attention for its ability to solve highly-parallel and semi-
parallel problems much faster than the traditional sequen-
tial processor. In this chapter, we have conducted research
to exploit this architecture and apply its strengths to the
flocking based data clustering problem. Using the CUDA
platform from NVIDIA, we developed a Multiple Species
Data Flocking implementation to be run on the NVIDIA
GPU. Performance gains ranged from 30 to 60 times im-
provement of the GPU over the CPU implementation.

1. Introduction

1.1 Flocking Behavior

Social animals or insects in nature often exhibit a form

of emergent collective behavior known as ”flocking.” The

flocking model is a biologically inspired computational

model for simulating the animation of a flock of entities.

It represents group movement as seen in flocks of birds and

schools of fish. In this model each individual makes move-

ment decisions without any communication with others. In-

Figure 1. The three basic rules in the boid

stead, it acts according to a small number of simple rules,

dependent only upon neighboring members in the flock and

environmental obstacles. These simple local rules generate

a complex global behavior of the entire flock. The basic

flocking model was first proposed by Craig Reynolds [13],

in which he referred to each individual as a ”boid”, and

consists of three simple steering rules that each boid needs

to execute at each instance over time: separation (steer-

ing to avoid collision with neighbors); alignment (steering

toward the average heading and matching the velocity of

neighbors); cohesion (steering toward the average position

of neighbors). These rules describe how a boid reacts to

other boids’ movement in its local neighborhood.

As shown in Fig.1, in the circled area of Figure 1(a), 1(b)

and 1(c), the boid’s (located in the center of the small circle

with grey background) behavior shows how a boid reacts

to other boids’ movement in its local neighborhood. The

degree of locality is determined by the range of the boid’s

sensor. The boid does not react to the flock mates outside

its sensor range. These rules of Reynolds’ boid flocking

behavior are sufficient to reproduce flocking behaviors on

the computer.



It has been shown, however, that these rules alone are not

sufficient to simulate flocking behavior in nature. Our early

experiments [4] indicate these three rules in Reynolds’s

flocking model will eventually result in all boids in the sim-

ulation forming a single flock. It can not reproduce the real

phenomena in the nature: the birds or other herd animals

not only keep themselves within a flock that is composed of

the same species or the same colony creatures, but also keep

two or multiple different species or colony flocks separated.

To simulate this nature phenomenon, we proposed a new

Multiple Species Flocking (MSF) model [4] to model the

multiple species bird flock behaviors. In the MSF model,

in addition to these three basic action rules in the Flocking

model, a fourth rule, the feature similarity rule, is added into

the basic action rules of each boids to influence the motion

of the boids. Based on this rule, the flock boid tries to stay

close to these boids that have similar features and stay away

from other boids that have dissimilar features. The strength

of the attracting force for similar boids and the repulsion

force for dissimilar boids is inversely proportional to the

distance between the boids and the similarity value between

the boids’ features. The addition of this rule allows the use

of flocking behavior to organize groups of heterogeneous

boids into homogeneous subgroups.

1.2 MSF Document Clustering Algorithm

The document clustering algorithm that we used in our

research was originally described in [4]. This approach

treats documents as boids and uses the MSF model to clus-

ter based on a similarity comparison between documents.

In the MSF clustering algorithm, each document is summa-

rized by a feature vector. A similarity matrix is then built

for reference through calculation of the cosine distance be-

tween each document and all other documents. Once the

matrix is calculated all documents are given a random posi-

tion and velocity in a two dimensional plane. The boids that

share similar document vector feature (same as the birds

species and colony in nature) will automatically group to-

gether and became a boid flock. Other boids that have dis-

similar document vector features will stay away from this

flock. After several iterations, the simple local rules fol-

lowed by each boid result in generating complex global be-

haviors of the entire document flock. Eventually a docu-

ment clustering result emerges.

In the MSF model implementation, we use the following

mathematical equations to illustrate the four action rules for

each boid:

Alignment Rule:

d(Px, Pb) ≤ d1 ∩ d(Px, Pb) ≥ d2 =⇒
−→var = 1

n

∑n
x
−→vx (1)

Where var is velocity driven by alignment rule, d(px, pb)

Figure 2. Document Flocking implementation
in CUDA

is the distance between boid B and its neighbor X, n is the

total number of boid B’s local neighbors, vx is the velocity

of boid X, d1 and d2 are pre-defined distance values and

d1 > d2.

Separation Rule:

d(Px, Pb) ≤ d2 =⇒ −→vsr =
∑n

x

−→vx+−→vb
d(Px,Pb)

(2)

Where vsr is velocity driven by seperation rule, d2 are

pre-defined distance, vb and vx is the velocity of boid B and

X.

Cohesion Rule:

d(Px, Pb) ≤ d1 ∩ d(Px, Pb) ≥ d2 =⇒
−→vcr =

∑n
x

−−−−−−→
(Px − Pb)

(3)

Where vcr is velocity driven by cohesion rule, d1 and d2
are pre-defined distance and

−−−−−−→
(Px − Pb) calculates a direc-

tional vector point.

Feature Similarity Rule:

In this research, rather than directly use the feature sim-

ilarity rule, we nullified the alignment and cohesion rules

when S(B,X) < T . S(B,X) is the similarity value be-

tween the features of boid B and X and T is similarity

threshold. Thus, for dissimilar boids, separation is the only

active rule, causing them to repel one another.

As indicated in the MSF model, at the initial stage, each

document vector is projected as a boid and randomly de-

ployed in a 2D virtual space. all boids move at a constant

speed throughout the simulation but each boid’s direction

changes on each step according to flocking algorithm.

To adapt the document flocking algorithm in an GPU

SPMD environment, we implement the algorithm in two

kernels (see Fig 2). The first kernel creates a thread for

each document boid pair (n2 threads in total) and compares

their locations in the 2D virtual space to determine if the



distance between them is within the neighborhood thresh-

old. If the distance is small enough, a document compari-

son is initiated. This comparison entails a reference to the

cosine similarity matrix in global memory. If the distance

value retrieved between the two documents is small enough,

the documents are deemed similar and treat each other as

flock mates. In every simulation step, each boid will de-

termine its new velocity according to the rules listed in the

MSF algorithm. All other boids that are considered in this

boids neighborhood will contribute to the modification of

this boid velocity. Similar documents contribute to the final

velocity of each using the separation, cohesion, and align-

ment rules discussed earlier. Dissimilar documents con-

tribute to the final velocity of each using only the separation

rule. Once each documents influence on the rest of the pop-

ulation is calculated, the second kernel is run. This kernel

spawns n threads, each updating the final velocity and posi-

tion of a single document. Here we added some randomness

to the simulationfifteen percent of all final movement calcu-

lations are random. Adding a random element to the system

ensures that documents suitably explore the solution space

in search of other flock mates. From our observations, we

can also see that without this element the system of birds

will degrade to a few clusters of boids flying in circles. Each

new velocity calculation (or random calculation) is normal-

ized to have a standard magnitude, keeping all boids moving

with constant speed. Additionally, limitations are in place

in this kernel to prevent velocity direction from changing

drastically in each generation. This forces each document

to make gradual turns, exposing it to a larger number of

neighbors and more accurately simulating the behavior of

birds. When this kernel is finished executing, a generation

is finished and the cycle begins again.

2 Implementations, and Evaluations

2.1 Experimental Environment and Data

In setting up our research we made an attempt to use

low cost, commercially available equipment to help under-

line the cost and performance benefits of our approach. All

tests that we performed were run on a single desktop work-

station. This machine houses 4GB of RAM and a single

3.0GHz Intel core duo. We added an NIVIDA Geforce

8800GTX graphics card to the workstation to enable the use

of CUDA. The 8800GTX contains 16 SIMD processors and

has 768MB of device memory. All experiments were run

under Red Hat Linux Enterprise 4.

We compiled the documents used for clustering in our

experiments from the TREC TIPSTER-2 data set. The

TREC data set contains Associated Press news articles from

1988. We initially processed the documents by stripping out

XML tags, stop words, numbers, and punctuation. We then

stemmed the document content using a Porter Stemming al-

gorithm [11]. Finally, we generated a term frequency list

using TF-ICF [12], and normalized these frequencies for

direct document comparison. Once document vectors were

produced they were subjected to a dimensionality reduction;

giving all document vectors a constant two-hundred dimen-

sions. These reduced-dimension vectors were then used to

build a cosine similarity matrix.

2.2 Challenges and Solutions

One fundamental challenge of programming in CUDA

is adapting to the Single Program Multiple Data (SPMD)

paradigm, which differs from traditional parallel paradigms

in that multiple instances of a single program act on a body

of data. Each instance of this program uses unique offsets to

manipulate pieces of that data. Data parallelism fits well in

this paradigm while operational parallelism does not. Once

the programming paradigm is understood, there are addi-

tional difficulties in using the CUDA language. Since each

warp is executed on a single SIMD processor, divergent

threads in that warp can severely impact performance. To

take advantage of all eight processing elements in the mul-

tiprocessor, a single instruction is used to process data from

each thread. However, if one thread needs to execute dif-

ferent instructions due to a conditional divergence, all other

threads must effectively wait until the divergent thread re-

joins them. Thus, divergence forces sequential thread exe-

cution, negating a large benefit provided by SIMD process-

ing. Another limitation in CUDA is the lack of communica-

tion and consequently the lack of synchronization between

blocks. This creates possible problems of data consistency,

typical of parallel modification of singular values.

Currently, standard (or otherwise) C libraries are not

available/compatible for use on the GPU. NVIDIA(R) does

however package some basic FFT and Linear Algebra li-

braries with the CUDA toolkit. In the future, more libraries

could be written for CUDA (by users) as device functions to

help streamline the development process. Debugging can be

difficult in CUDA. A debug mode is available in the CUDA

compiler which forces sequential execution on the CPU by

emulating the GPU architecture. Although this mode is use-

ful for most general types of debugging, some errors are not

exposed. The emulator cannot detect any concurrency prob-

lems as its execution is sequential. Write and read hazard

behavior is undefined during thread execution on the GPU,

therefore the programmer must be cautious to avoid these

errors. Read and write memory hazards occur when data

are being written or accessed in an order which is not in-

tended or defined. While running a kernel on the GPU, no

access is provided to the standard output. This effectively

turns the GPU into a black box when it comes to runtime

behavior.



Figure 3. Document Positions were Stored in
Texture Memory

The largest constraint for us in our work was the short-

age of fast, local shared memory on GPU. Due to the large

size of document information and our initial method of doc-

ument comparison we were forced to make frequent reads

from GPU global device memory [2]. This memory is not

cached and has a delay of hundreds of clock cycles per read

associated with it [9]. We tried to reduce the impact of this

problem by caching some document terms in shared mem-

ory for fast access. After our initial efforts [2] implement-

ing a GPU document flocking algorithm, we decided to re-

vise our approach by creating a document similarity matrix

and merely reading that value from device memory for each

document comparison. This approach proved to be vastly

superior to our initial approach demonstrating that our in-

stinct to perform as much calculation inside the kernel was

not suitable for our data. Another problem we encountered

in our research was the requirement of thread divergence in

the implementation. Certain conditional statements could

not be avoided. This seemed to have some effect on the per-

formance, but not a significant one when compared with the

performance degradation of global memory reads. In an ef-

fort to improve the speed of position retrieval and distance

calculation, all document positions were stored in texture

memory. The texture memory is initialed by code shown in

Fig.3. This design decision did improve the performance of

our implementation on the GPU, but it put a hard limit on

the number of documents that could be compared.

3 Final evaluation and validation of results,
total benefits, limitations

The MSF document clustering algorithm was imple-

mented in CUDA and was run on the GPU of our test work-

station. For performance comparison purposes, a similar

but sequential implementation was written in C and run

on the CPU of the same machine. The CPU version MSF

clustering implementation only use single core for comput-

ing. We conducted testing on differently sized sets of doc-

uments. Document set sizes ranged from 200 to 3600 doc-

uments in increments of 200 documents. We tested each

Figure 4. Three thousand documents flock-
ing at 44, 200, and 400 generations

Figure 5. Document Flocking runtime, CPU
vs. GPU

set 30 times and then averaged the runtime of each. We

used randomly generated values for the initial position and

the movement direction of each document for each test to

prevent accidental initial seeding optimization (seeding was

based on cpu clock time). Each test ran the flocking sim-

ulation for four-hundred generations. This means that doc-

uments updated their positions and directions four-hundred

times based on other documents present in their neighbor-

hood. Based on our observations, four-hundred generations

was an adequate number to allow the documents to converge

into stable clusters of similar documents (Fig.4).

The flock parameters of each simulation were identical.

The ”flying” space of the documents was 300x300 square

units. This size space was selected to allow adequate room

for each document to move. Each document had a static

neighborhood radius of 30 units and a constant speed of

two units per generation. These parameters were selected

based on the flying space size and the observed behavior of

the flocks. Each document had a maximum limit of a 0.35
radian deviation from its previous moving direction. The

methods for selecting these parameters is described in [4].

We gave each rule a weight that encouraged system behav-



Figure 6. Document Flocking runtime, CPU
vs. GPU

Figure 7. GPU over CPU Runtime Ratio

ior typical of flocking birds. We assigned a weight of 0.33
to the alignment rule, 0.66 to the separation rule, and 0.33

to the cohesion rule. The document feature vector similarity

threshold T was 1.20. This value was selected based on ex-

perimental observation. It was small enough to clearly dif-

ferentiate groups in the flock while not being so small that it

prevented flocking altogether. As mentioned before, a ran-

dom element was introduced at every generation. Through

observation, we felt that fifteen percent random movement

was high enough to keep the system from stagnating, while

low enough to ensure flocking behavior persisted.

Through our experiments we observed that document

flocking on the GPU has a runtime that is significant smaller

than its CPU counterpart (see Fig. 5 and Fig. 6). From

GPU speedup chart in Fig. 7, we observed that with 200

documents the GPU implementation is roughly 36 times

faster than the CPU version. Initially, as we increased the

number of documents in our test set, the improvement in-

creased. For 1000 documents, we saw an improvement of

nearly sixty times over the CPU. We hypothesize that the

lower performance that occurs with less than 1000 docu-

ments is caused by not all processing elements on the GPU

being utilized. From 1200 to 3400 documents however, the

improvement degrades. As is clear in Fig. 7, after 1000

documents, performance degrades nearly linearly. While

we have done no direct testing, we think this could be due

to an increase in global memory reading requirements as the

population size grows.

4 Future directions

In future work, larger data sets could be investigated.

Clustering hundreds of thousands or even millions of doc-

uments on a workstation quickly is currently an unsolved

research problem but the GPU may provide hope. Distribut-

ing the document flocking algorithm across many GPUs

could also substantially improve the number of documents

that can be handled during a simulation, possibly allowing

millions of documents to be clustered quickly. The cur-

rently released NVIDIA Tesla GPU architecture has many

times the amount of device memory as the GTX we used

in here. These additional capabilities may greatly enhance

the already high performance we saw in our tests. We hope

that through this research we can provide some guidance,

insight, and inspiration to other researchers who deal regu-

larly with data parallel algorithms.

Acknowledgments.

This work was funded in part by the Lockheed Martin Cor-

poration Shared Vision program. The views and conclu-

sions contained in this document are those of the authors.

This manuscript has been authored by UT-Battelle, LLC,

under contract DE-AC05-00OR22725 with the U.S. Depart-

ment of Energy. The United States Government retains and

the publisher, by accepting the article for publication, ac-

knowledges that the United States Government retains a

non-exclusive, paid-up, irrevocable, world-wide license to

publish or reproduce the published form of this manuscript,

or allow others to do so, for United States Government pur-

poses.

References

[1] Anderberg M.R., Cluster Analysis for Applications.

Academic Press, Inc., New York (1973)

[2] Charles J. S., Potok T. E., Patton R., Cui X., Flocking-

based Document Clustering on the Graphics Process-



ing Unit, DOE Office of Science Journal of Under-

graduate Research, Volume VIII, 2008

[3] Chitty D., A Data Parallel Approach to Genetic Pro-

gramming Using Programmable Graphics Hardware,”

Proceedings of the 9th annual conference on Genetic

and evolutionary computation, pp. 1566 - 1573 (2007)

[4] Cui X., Gao J. and Potok T., A Flocking Based Al-

gorithm for Document Clustering Analysis, Journal of

System Architecture, June,(2006)

[5] Fang R., et al, GPUQP: query co-processing using

graphics processors, in Proceedings of the 2007 ACM

SIGMOD international conference on Management of

data, pp. 1061 - 1063 (2007)

[6] Farivar R., Rebolledo D., Chan E., and Campbell

R., A Parallel Implementation of K-Means Clustering

on GPUs, WorldComp 2008, July 2008, Las Vegas,

Nevada, (2008)

[7] Jain A.K., Murty M.N., Flynn P.J. Data clustering:

a review. ACM Computing Surveys 31, pp. 264-323

(1999)

[8] Laguna G., Olgun M., Cruz N., Barrn R. and lvarez

J.: Comparative Study of Parallel Variants for A

Particle Swarm Optimization Algorithm Implemented

on A Multithreading GPU. Journal of Applied Re-

search andTechnology (JART). ISSN: 1665-6423.

Vol.7 No.3, 20

[9] NIVIDA, CUDA: Compute Unified Device Archi-

tecture, NIVIDA, http://developer.NIVIDA.com/cuda,

Version 1.1, (2007)

[10] Owens J.D., et al. A Survey of General Purpose

Computation on Graphics Hardware. 2007 Computer

Graphics Forum Volume(26) pp. 80-113 (2007)

[11] Porter M.F., An algorithm for suffix stripping, Pro-

gram, 14 no. 3, pp 130-137 (1980)

[12] Reed J., et al. TF-ICF: A New Term Weighting

Scheme for Clustering Dynamic Data Streams, in

Proc. Machine Learning and Applications, ICMLA

’06, pp. 258-263 (2006)

[13] Reynolds C.W., Flocks, Herds, and Schools: A

Distributed Behavioral Model. Computer Graphics

(ACM) 21, pp. 25-34 (1987)

[14] Rick T., Mathar R., Fast Edge-Difraction-Based Ra-

dio Wave Propagation Model for Graphics Hardware,

Proceedings of ITG INICA, (2007)

[15] Rodrguez-Ramos J., et al, Modal Fourier wavefront

reconstruction on graphics processing units, Proceed-

ings of the SPIE, Volume 6272, pp. 627215 (2006).

[16] Selim S.Z., Ismail M.A., K-Means-Type Algorithms:

A Generalized Convergence Theorem and Characteri-

zation of Local Optimality. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence PAMI-6, pp.

81-87 (1984)

[17] Steinbach M., Karypis G., Kumar V. A., comparison

of document clustering techniques. KDD Workshop

on Text Mining. (2000)

[18] Xu Z., Bagrodia R., GPU-accelerated Evaluation Plat-

form for High Fidelity Network Modeling, in 2007

Proceedings of the 21st InternationalWorkshop on

Principles of Advanced and Distributed Simulation.,

pp. 131-140 (2007)

[19] Yamagiwa S., et al, Data Buffering Optimization

Methods toward a Uniform Programming Interface for

GPU-based Applications, Proceedings of the 4th inter-

national conference on Computing frontiers, pp. 205 -

212. (2007)


