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Abstract—Devices  such as mobile  phones, tablets, and sensors are  often  equipped   with GPS that accurately report a person’s 
location. Combined with wireless communication,  these devices enable  a wide range of new social tools and applications. These same  
qualities,  however,  leave location-aware  applications  vul- nerable to privacy violations. This paper introduces the Negative Quad Tree,  
a privacy protection  method for location  aware applications. The method  is broadly applicable to applications that use spatial 
density information,  such as social applications that measure the popularity of social venues. The method employs a simple 
anonymization algorithm running on mobile devices, and a more  complex reconstruction  algorithm on a central server. This strategy 
is well suited to low-powered mobile devices. The paper analyzes the accuracy of the reconstruction  method in a variety of  
simulated  and real-world  settings and demonstrates that the method  is accurate  enough  to be used  in many real- world scenarios. 
 

I.  INTRODUCTION 

With the proliferation of social networking applications, mobile devices, and urban sensor networks [1], location shar- ing  
has  become   a  common online activity. Many mobile devices contain location sensors  (e.g. GPS, cellular tower 
triangulation) that can report  a person’s position  with a high degree  of accuracy.  Social networking sites take  advantage of  
this  location information for  a  variety of  applications. Examples include visualizing social hotspots  1 , identifying traffic 
congestion [2], and informing friends of one’s current location 2 . Although  these applications provide many benefits, users still 
express strong privacy  concerns [3]. 

Typically in these applications,  mobile devices record the user’s location,  and transmit it to a central application  server. The  
server then compares  and aggregates  locations in  an application-specific   manner.  Many privacy  and security is- sues can 
arise during the application lifecycle. For example, location data may be intercepted  during transit. Although encryption can 
help, once at the application provider’s server, the location information is still vulnerable to compromise or unintended  use.  
Even when individual users  are willing  to reveal sensitive  information, archiving such data may lead to inadvertent  privacy  
breaches.  One method to protect the user from privacy  breaeches is to remove all unique identifiers from the location 
information. This can be accomplished by 
 

1 citysense.com 
2 www.google.com/latitude 

 

the user’s  mobile device before transmission.  In  order to further  anonymize  the process, the message can be transmitted 
through  a MIX network [4] (e.g. Onion routing [5]). Although effective in hiding the user’s identity,  this scheme also makes it more 
difficult for the server to authenticate users and involves many trusted components. 

Instead of anonymizing the user,  an alternative  approach obsfucates the location data. By obsfucating location data in- 
telligently, individual users’ privacy can be preserved without sacrificing the ability to authenticate users. A popular instantia- tion 
of this approach is spatial cloaking in which only a coarse view of the user’s location is reported [6]. This technique can be  
combined with k-anonymity [7], where  a sufficient large location  area is reported to ensure that at least k individuals are co-
located, making it difficult to know which one is the actual user. These techniques, however,  still reveal the approximate 
location of a particular  user. Also, the locations can often be correlated  with other users, especially  if a history is stored. 
Decreasing spatial resolution can increase  the k-anonymity, but may simultaneously harm the usability  of the application. Yet  
another technique  encrypts  the location so  data cannot be reconstructed if  intercepted. Although this protects from unwanted  
snooping, the data must still be decrypted at the application  server, which presents opportunities  for malicious insiders or 
external parties to gain this information. 

In  our approach  users  report locations where they are not found. This process,  called negation,  enables  users to 
participate anonymously in many location-based applications. Specifically,  we target applications  in which users are inter- ested 
in aggregated location information.  Using our technique, the negated locations  can be reconstructed  to compute  the overall 
spatial distribution via a modified  Negative Survey [8] algorithm.  Location-based services that report back specific locations of 
nearby services would need to use an alternative approach,  such as one based on private information  retrieval [9]. 

In this paper, we introduce the Negative Quad Tree (NQT) algorithm, an extension of the Negative Survey that handles larger 
areas with fewer samples without  sacrificing reconstruc- tion accuracy. The key is to employ a hierarchical  negation scheme.  
Unlike  location-cloaking,   adversaries cannot even approximate  where  a particular  user is located. In addition, adversaries 
cannot differentiate  between multiple possible lo- 
 

2 



 

0          1 
 

0       1 

0       1 
2       3 

 

2          3 
2       3 

 
Actual <3, 1, 2> 
 

 
 

 
Actual <3, 1, 2> 
All possible negative vectors 
 

 
 

Actual <3, 1, 2> Negated <0, 3, 1> 
 

Fig. 1.    Example  quad tree and illustration of the negation algorithm.  The two-dimensional  area is recursively divided into four quadrants. A location is 
encoded  as a series of values identifying the quadrant starting with the upper-most  set of quadrants. Given a location  (green), the algorithm  selects at random 
a negated vector (blue).  Once a negative vector is selected (highlighted),  the algorithm  is able to exclude many locations (red). 



 

cations for a particular   user. In the remainder of the paper we give details of the algorithm (Section II),  and evaluate the 
algorithm, theoretically  and via simulation,  under various conditions (Section III).  We  show that the algorithm can 
anonymize data adequately while accurately reconstructing im- portant information.  We also discuss potential vulnerabilities  of 
our approach and demonstrate how it can defeat common correlation-based  attacks  (Section IV).  Finally, we discuss related 
work (Section V) and offer a brief conclusion (Section VI). 
 

II.  COMPUTATIONAL MODEL 

The Negative Quad Tree algorithm  consists of two phases. First, all locations are anonymized locally at the source via a 
personal device (e.g. mobile phone) using the negate algo- rithm. Because these devices  are small and low powered, the 
anonymization  process is designed to be simple and efficient. Next the anonymized data are collected at a single application 
server. The server then reconstructs the spatial distribution of all the users. Finally, the reconstructed spatial distribution  is 
transmitted back to users. 
 

A. Anonymizing Location Data 

The first step in the NQT algorithm is anonymization of the location  data. Most GPS devices represent location  as a pair of 
latitude and longitude  values. This is converted to a quad tree format  [10]. In a quad tree, the area of interest is divided into four  
rectangular  quadrants. Each of these quadrants  are numbered  (0 - 3). Within each quadrant,  the area is divided into  sub-
quadrants.  This division repeats  recursively until the desired resolution  is reached. A location is encoded by recording all 
the quadrant values. With 5 hierarchical divisions (or levels), the quad tree will contain 1024 grid cells, sufficient for describing 
many metropolitan-sized areas (with 1km2 grid cells). 

Once the location  has been converted to a quad tree vector, the vector is anonymized  using a procedure adapted from the 
 

 
Algorithm 1 Negate(l) 

 
Require: location l 

for i = 0 to levels do 
ni  ← random({0, 1, 2, 3} ­ {li }) 

end for 
 

return  n 
 
Negative Survey [11]. For each element in the quad tree vector, the algorithm selects  one of the other remaining quadrant 
values uniformly at random (Algorithm 1). For example, if the first vector value is 1, the algorithm chooses 0, 2, or 3. After 
completing this process for each vector value, the user is left with a negative  vector. 

Figure 1 illustrates this process  for  the location vector 
< 3, 1, 2  >.  This process  can be visualized as randomly  selecting  one of the possible  negative  vectors (represented  as 
blue tiles in the left-hand figure). Once a negative  vector is selected,  the reconstruction algorithm then eliminates all locations  
represented by the negative vector (represented  as red tiles in the right-hand figure). For example, if < 0, 3, 1 > is chosen  as 
the negative vector, the algorithm  can eliminate all locations in quadrant 0. In the remaining  quadrants, the algorithm can 
eliminate all locations in sub-quadrant 3. Within those remaining, the algorithm can finally  eliminate sub- quadrant  1. After  
eliminating all these locations,  there are still many remaining locations. The job of the reconstruction process is to estimate  
the number of samples found in the remaining  locations. An important  aspect to note is that the remaining locations are 
spread throughout  the entire gridded area. This ensures that it is difficult to accurately  guess the actual (or even approximate) 
location of the user. 
 

B. Reconstructing Spatial Distributions 

Once all the negative  vectors  are collected, the NQT al- gorithm reconstructs  the spatial distribution using a  proba- 
bilistic approach.  For each grid cell, the algorithm begins 
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Fig. 2.   Examples of the negation and reconstruction  process for grids with 4 and 5 hierarchical levels using 128, 000 samples. Red indicates  denser areas, 
while blue indicates sparse areas. The first column with actual data contains a few densely populated areas. The second column  with the negated data obsfucates 
the data. The third column displays the reconstructed data. 

 
 

Algorithm 2 Estimate(l, r, e) 
 

Require: location l, reported values r, current estimates e {l̂: 
negative vectors of l, 
c: contributions from other possible locations, 
P rm→n : probability of m generating neg. vector n} 
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s ← 0 
for n ∈  l̂  do} { 

c ← 0 
for m ∈ {n̂} do 

if m /= l then 
c ← c + (P rm→n ) × (em ) 

end if 
end for 
s ← s + rn ­ c 

end for 

    return  s 
 
by examining all compatible negative vectors (i.e. a negative vector  that may have originated  at that location).   Because a single 
negative vector may originate from multiple grid cells (Figure 1), the algorithm calculates the expected contribution  from each 
of these locations  (with the exception of the grid 
 
Fig. 3.     Example of a  linear system  generated  from the reconstruction algorithm (100 samples, 1 quad tree level). There is a variable  for each grid cell. 
The top equation is for estimating the first grid cell (x0 ), etc. 
 
cell that we are trying to estimate).  By eliminating these additional contributions the user is left with the estimate for the 
current location. This reconstruction  process is formalized in Algorithm 2. 



Calculating the expected contribution  requires multiplying the probability  that the negative vector originated from a par- 
ticular location with the number of samples for that location. In order to estimate the number of samples  for a location,  the  
algorithm relies on an estimate for the other remaining locations (which are also unknown). Consequently,  the re- 
construction  process is naturally  expressed as a linear  system of equations.  Each grid cell is associated with an equation. 
Variables in this system  represent  the number of samples 
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for a particular  location.  For each location variable, we use Algorithm 2 to generate the coefficients of the equation. These 
coefficients reflect the probabilities of a location  contributing  to a particular  estimate. Finally, each equation in this sytem is 
bound by the sum of all the compatible negative vectors (r) for the location  associated with that equation. Figure 3 illustrates  a 
simple matrix using a single  quad tree level. 
 

Levels Running Time (sec.) 
1 0.004 ± 0.004 
2 0.003 ± 0.005 
3 0.039 ± 0.052 
4 0.498 ± 0.058 
5 17.030 ± 0.158 

 
TABLE I 

EXECUTION TIME OF THE RECONSTRUCTION ALGORITHM WITH 128, 000 
SAMPLES AS THE NUMBER  OF LEVELS IS INCREASED FROM 1 TO 5. 

 
We  solve  this system  using the Apache  Commons   Java matrix  library.  As Table I illustrates, the reconstruction  process is 

relatively fast even for 5 quad levels (a 1024 square matrix).  These values were obtained using a quad-core workstation  (2.6 ghz 
Intel processors with 4 GB of RAM). Solving problems of the form Ax = b is typically accomplished via LU factor- ization, an 
O(n3 ) process. For applications that require more than 5 quad levels, directly solving the linear system could be prohibitive. In 
that case, alternative approaches to solving the system may be necessary (e.g. Gauss-Seidel). However,  for applications that  
take place in a  typical metropolitan   areas, 
4 ­ 5 quad levels should be sufficient. 
 

III.  EVALUATION 
 

Levels Negated Accuracy Estimate Accuracy
2 -0.356 ± 0.302 0.995 ± 0.302
3 -0.171 ± 0.231 0.874 ± 0.231
4 -0.093 ± 0.207 0.705 ± 0.207
5 -0.069 ± 0.059 0.518 ± 0.059

 
TABLE II 

AVERAGE  CORRELATION VALUES  AND  STANDARD  DEVIATIONS OF NEGATED  AND  RECONSTRUCTED HISTOGRAMS AS THE NUMBER  OF 

LEVELS IS INCREASED FROM 2 TO 5 USING 128, 000 SAMPLES. VALUES CLOSE TO −1.0 OR 1.0 INDICATE A STRONG CORRELATION. 
 

figure, we employ 4 hierarchical levels (for a  total of 256 grid cells). Three large areas are more densely populated than the  
rest of the area  (blue indicates  low density, while red indicates high density). In the bottom-most figure, we employ 
5 hierarchical levels (for a total of 1024 grid cells), and densely populate four areas. Both settings use 128, 000 samples. The 
middle figures visualize the distribution of negated vectors, showing  that they do not reveal much information  about the actual  
distribution. Table II  reports the Pearson correlation.  Because negative  vectors  exclude  large portions of the two- dimensional  
area,  the Pearson correlation  is better than 0. Overall, the reconstructed distributions identify  salient features of the original 
distribution.  Noise is introduced, however, in many of the surrounding grid cells. 

To observe the amount of noise introduced in the reconstruc- tion, we illustrate the number of grid cells that are densely, 
partially,  and sparsely populated (Figure 4). In the original  data there are very few grid cells that are densely populated. The 
reconstruction   captures  these densely  populated  areas well. However, many grid cells that were sparsely populated now 
contain slightly more samples (thus moving those grid cells into the partial category). 
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Fig. 5.   Variance of the reconstruction  as sample size and number  of quad tree levels are increased. 

 
To evaluate the efficacy of the reconstruction  process, we modeled  the coefficient of variance  in addition to running 

 

Fig. 4.     Number of  grid cells that are densely,  partially, and sparsely populated. The reconstruction is able to capture densely populated areas well. 

 
In Figure 2, we illustrate the results of negating  and re- constructing the spatial distribution  in two settings. In the top 

 

a series  of simulated  experiments. As discussed earlier, the population estimate for a particular cell is equal to the expected 
contribution from all the cells that could have contributed. To model the variance, we assume that each of these candidate cells 
receives an equal number of samples from the negation 
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process. This assumption allows us to model the reconstruction as a binomial  process. The variance is then modeled using the 
following equation (sampling size n and l hierarchical levels): 
 

   
(3l ∗  n )( 1 )(1 ­  1 ) 

 



increases and then steadily converges for most configurations (Figure 7). We also observed differences  in the distributions more 
readily; distributions containing fewer dense areas per- formed  better. However,  the uniform distribution usually out- performed 
the other distributions  after a sufficient  number of 
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samples (> 60000). Finally, we observed that because accu- 
 

4l        3l 

 
Results are illustrated  in Figure 5. As the sampling popula- tion increases, the variance quickly decreases and then levels off. 

Although variance is not a direct measure of reconstruction error, as variance  decreases, the overall error is expected to decrease. 
As illustrated, however, with 5 levels, the variance does not reach 0 even  with  a  high sampling population. As the number 
of levels is increased, the variance  increases proportionally. With  a  sample size of  1000, the variance approaches 1 (at 5 
levels), indicating that the reconstruction process will do poorly at those extremes. 

We confirmed  these modeling  results using a  set  of sim- 
ulated and actual population  data. We simulated population data using three spatial distributions.  First we simulated   a 
uniform distribution with minor random variations in which users were spread  uniformly throughout  an area. We  also 
simulated a patchy distribution,  in which large groups of users were located  in small patches. Finally, we simulated  a dense 
distribution, in which most of the users reside in a few grid cells. We ran all experiments against these three distributions.  For 
each experimental  setup, we ran the experiment 10 times and averaged the accuracy values. 

To measure accuracy, we compared the reconstructed his- 
togram to the original histogram using the Pearson correlation  coefficient (i.e. R value). The coefficient is calculated   as 
follows:   

X 
   

Y
 

 

racy only increased slowly after a large number of samples (if at all); small fluctuations in sample size did not greatly affect the 
results. This can be both good (if there are fewer samples) or bad (since we cannot drastically  increase the accuracy with more 
samples). However, for many social applications tens of thousands of participants is a realistic  and sufficient  figure. 

In addition to simulation data, we also evaluated the recon- struction  technique on real world data. We downloaded geo- 
tagged images  over a  1 year period from the photo-sharing site Flickr for the city of  Barcelona,  Spain. We  obtained 
approximately  40, 000 points centered around  the area near Port de Barcelona  representing approximately  a 25km2 area. We  
retroactively  anonymized  the data using 5 hierarchical levels. We then reconstructed the data using the Negative Quad Tree  
algorithm. As Figure 8 illustrates,  the reconstruction represents the popular  area near the center and a few smaller popular 
areas surrounding  the center. However,  the center area is enlarged, and there are many false positives  near the edges of the 
gridded area. The overall accuracy was approximately 
0.59 indicating  that the algorithm  has difficulty capturing fine details. Refining our technique against additional  real-world data 
is a subject  of future work. 

The results of these  experiments   suggest  that the NQT reconstruction is accurate for a wide array of sampling and 
resolution scenarios. In general, lower spatial resolutions  and higher sampling  rates increase overall  accuracy as one would 
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expect. This is true for many different types of spatial distribu- tions. The NQT reconstruction works especially well on large, 
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dense areas. Of course, applicability  depends on the nature of 
 
where X  refers to the original data and Y the reconstructed data. Given two similar histograms, the function will  output 
a  value close to ­1 or +1  (indicating a strong  negative  or 
positive correlation between X and Y ). Dissimilar histograms 
will output  a value close to 0 (indicating no correlation). 

In the first experiment, we evaluated the effects of increasing the spatial resolution (by increasing the number of quad tree 
levels) as the number of samples varied (1000, 16000, 64000, and 128000). Not too surprisingly, the accuracy steadily de- 
creased  with the number  of levels (Figure 6) from a high of 1.0 to values between 0.4 and 0.6. This was true across all  
sample  sizes and distributions. The uniform distribution,  however, was more volatile and the reconstruction  was easier with  
large sample  sizes.  Again, we found that the patchy distribution  performed better than the dense distribution.  We should 
note, however, that even with 5 levels, the accuracy was still relatively high (> 0.4), indicating that our reconstruction method can 
work in high resolution scenarios. 

We also evaluated the effects of increasing the number of 
samples on the accuracy as we varied the number of hierarchi- cal levels (2, 3, 4, and 5). We observed that accuracy quickly 
 

the application  requirements. For example, applications  that are designed to pick out social hotspots will  perform well, 
because they are insensitive to small inaccuracies. For more demanding  applications,  such as census modeling,  alternative 
approaches may be necessary if the accuracy cannot be suffi- ciently increased. 

 
IV.  CORRELATION-BASED ATTACKS 

 
Many applications rely on collecting location data periodi- cally from users. Assuming  that the user moves slowly (e.g. 

walking),  an adversary may be able to perform a correlation-  based attack to guess  the user’s  location. To execute  this 
attack, the adversary  must first gain access  to a  history of the user’s negative vectors. Given two negative vectors, one at time 
i and another at time i + 1, the adversary could generate all possible locations for each negative vector and then perform a  pair-
wise  comparison  between the two sets.  Any pair of locations that is geographically close to each other has a strong likelihood 
of being the actual user location. The adversary can then further decrease  the number  of possible  pairs by 
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Fig. 6.   Accuracy of the reconstruction  as the number of hierarchical  levels are increased from 1 to 5 using 1000, 16, 000, 64, 000, and 128, 000 samples. 
The accuracy decreases with more levels for nearly all sample sizes. 

 
continuing this process. If the number of pairs is sufficiently low, the adversary could then guess the user’s location. 

 
 



To address  this attack, the Negative  Quad Tree can be slightly modified to minimize differences between subsequent 
negative vectors. First, a very short history of previous negative vectors is stored locally on the user’s device. If a user moves to a 
nearby grid cell, the algorithm  does not generate a com- pletely new negative vector. Instead, the algorithm  attempts to re-use  as  
many elements from one of the previous negative vectors. This is feasible because  a  single negative  vector describes many 
potential  locations.  Assuming  that the user has not moved very far, most of the negive vector  elements can be re-used. Often one 
of the exact same negative vectors can be re-used. Implementing  this optimization  greatly reduces the potential  for a correlation-
based attack (Figure 9). In the non- optimized  case, the number of potential locations decreases quickly for  scenarios  in 
which the user  is moving along a straight  line and a random  walk. However, for the optimized algorithm, the number of 
potential  locations stays very high regardless of the history size. This makes it substantially more difficult to guess the user’s 
location. 
 

A. Negative Survey 

The NQT algorithm extends earlier work on the negative survey. In the original work, users report a  single value by 
choosing randomly from a set of discrete categories excluding their own own. These  negated  values are reported  to the base  
station and a histogram   is reconstructed. In principle, 
 
this method could be applied to spatial density estimation by treating each  location as a  discrete  category.  However,   the 
original negative survey has difficulty handling large numbers of  categories,  making the technique  infeasible for  spatial 
applications (the number of locations  grows as 3levels ). More recently  there has been work to improve the reconstruction 
accuracy of the negative survey by assuming Gaussian priors [12]. This improved  accuracy enables the authors to consider 
spatial reconstruction. The NQT, in contrast,  does not make any a-priori assumptions regarding the spatial distribution. 
 

V.  RELATED WORK 

Recent  work on participatory,  urban sensing  re-enforces the need for privacy protection [13]–[15]. In these schemes, 
centralized servers sanitize private data in application specific ways. For example, by adjusting the location resolution. The NQT 
algorithm, in contrast, anonymizes the location  data at the point of collection, minimizing the risk of confidentiality loss. When  
the actual location data is transferred,  crypto- graphic techniques are often used to protect data transmit. Re- cent work shows 
that it is possible to use encryption  techniques on low power devices [16], [17], but the computational  cost is still high compared 
to noncryptographic  approaches such as the algorithms  described here. Cryptographic  techniques em- phasize data security, but 
because the data must be decrypted to be used they don’t provide full data privacy. 

AnonySense [18] is a generic privacy  framework  designed for use with personal devices within urban areas. Users employ 
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Fig. 7.  The accuracy of the reconstruction  as the number of samples are increased. The accuracy usually increases quickly with more samples, and eventually 
levels off. 

 

a tasking  language to specify the type of data to be collected from these devices. The system then anonymizes user informa-  tion 
using  a MIX network [4]. Unlike our work, AnonySense is concerned with anonymizing the source of the data, rather than the  
data itself. Due to its use  of a  MIX  network, the system requires a more complex  anonymization  and authenti- cation scheme 
in which the user must implicitly trust certain system services (e.g. the mixing components). Our technique is relatively simple  
and requires fewer trusted components, while still enabling many types of mobile applications. 

Our technique has the same goal as data perturbation  meth- ods [19]–[21], where random noise is added to a set of data to 
obfuscate it. This perturbed data is then used to reconstruct the distribution of the original unperturbed data. The random noise 

can be drawn from a variety  of distributions, including the original data distribution.  However,  these techniques are often 
designed to operate in a continuous  domain, while many location-based applications draw data from a discrete domain. Our work 

also shares many goals with privacy-preserving  data aggregation techniques [22]–[24], in which sensor nodes transmit  
anonymized  data. The anonymized  data are aggre- gated in such a  way that certain aggregate  functions   (such as average)  

can be easily computed. Our work extends this work to histogram  reconstruction,  which can also be used to compute 
various  aggregate values including average. One 

 

advantage that aggregation techniques have over NQT is the ability to perform aggregations in the network. This is a useful 
feature for wireless sensor networks,  and one which we hope to explore in the future. 

Randomized response techniques (RRTs) [19] are a survey method  designed  to estimate the proportion of a population  that 
belongs to a particular  group while protecting the privacy of  individuals participating in  the survey.  It  does this by offering  
surveyors multiple questions (only one of which is sensitive) in lieu of a single question. Individuals randomly select one of 
the questions to answer. Individuals  give a yes or no answer to one of these questions, but do not reveal which  question was 
answered. In this way, the results of the survey combined with the characteristics of the randomizing  device provides enough 
information to reconstruct the proportion of population members in each group. 

Another important class of applications that require privacy guarantees are online streaming applications. In these appli- 
cations, data is continuously  streamed to a server. The server then updates its internal state with statistics over the data (e.g. 
counting the number of distinct elements). The primary privacy goal in such applications is to ensure that the internal state can be 
updated without storing sensitive data. For example, if the goal of the application is to estimate the fraction of users that appear a 
certain number of times in the data stream,  a naive 
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Fig. 8.   Photo data obtained from Flickr of Barcelona, Spain over a one year period with 40, 000 samples. The right-most figure is the reconstruction of the 
original data using the NQT method. 
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solution may entail maintaining  a list of user IDs (or a hash of the user ID). However, this is bad for privacy  since this 
information  can be leaked. Work by Dwork et al [25] addresses some  of these  issues  using a  variety of methods  including 
randomized  response. The primary difference  between  these applications   and the ones we address is the assumption that all 
the data used for reconstruction are readily available. 
 

Our technique is inspired by negative  databases [26], [27]. The negative   database  stores a  compressed   form  of  the data  
complement  instead of the actual data. The subsequent database can be queried for element membership in polyno- mial time.  
However,  reconstructing the original database  is difficult  and formally NP-Hard. Other operations  over the negative  
database  are possible  and range in computational complexity  [28]. Unfortunately, the negative  database cannot be directly  
applied to our applications,   because it  is not designed for histogram reconstruction. Also, generating hard- to-reverse 
instances of the negative  database can be difficult in practice. 
 

VI.  CONCLUSION AND FUTURE WORK 
 

The ability to collect location data has created  many in- teresting  and useful applications.  These applications  range from 
providing social services to providing key information on traffic conditions. Although useful, location-aware applications also have 
the potential to be abused. Software  that helps users find nearby friends can be compromised and reveal private information.  
Similarly, applications  may reveal information  about users that unwittingly disclose private information.  To address these 
issues, we developed and evaluated the Negative Quad Tree algorithm, a privacy-preserving   method  that ad- dresses the 
construction of spatial densities using anonymous location data. We  evaluated the algorithm under a  variety of scenarios and  
demonstrated that it can be used in many real-world settings. Although the evaluation was performed in a  simulated  
environment, our implementation of the recon- struction  algorithm can be used in a  real system with very little modification. 
In addition, the anonymization protocol is trivially simple, making it suitable for mobile devices. 

Although the Negative Quad Tree addresses  a wide array of applications, the reconstruction is not perfect and may not 
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be suitable for all applications. We are focusing our future work on improving  the accuracy of the reconstruction  process for  
more stringent applications (including those that require higher spatial resolutions). One approach we are exploring  is 
combining location cloaking with the NQT. Assuming  that users are comfortable broadly describing their location (i.e. 
“south Knoxville”), we can employ the NQT in a smaller  area. In addition, we are also exploring  the use of multi-dimensional 
negative  surveys  in which multiple values  must be hidden (including location). We are confident that these extensions will 
enable the use of the negative surveying techniques in a variety  of future applications. 

As  more devices become location-aware,  the need for privacy protection can only increase. Privacy protection  will come  
in multiple  forms including legal constructs, crypto- graphic frameworks, and application specific algorithms. Our methods 
fall into application  specific  algorithms,  because we address location  privacy  within the context of certain applica- tion scenarios.  
As location-sensitive  technology  matures, we expect that privacy  requirements will  be addressed  through  a  combination of  
these  approaches.  By  incorporating   the Negative Quad Tree algorithm  into users’ devices, users will have an additional tool 
by which to control their privacy. 
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