
Using the New Python 3.2 Concurrent
Programming Features

April 13, 2011

The most recent release of Python (3.2) has introduced a new module called concurrent.futures that offers
Python programmers new, streamlined and flexible means for handling common concurrent programming
tasks -- thread and process submission, results handling, synchronization of execution and worker
threads/process pooling.

Three classes -- Futures, Executors and ExecutorPools -- constitute the basis of this new package, and the
previously mentioned common concurrent programming tasks are accomplished through the interaction of
these three classes.

Programmers familiar with Java will find these new features very familiar. The design of the
concurrent.futures module is directly inspired by the namesake structures available in Java's
java.util.concurrent package.

What Are Python Futures, Executors and Executor
Pools?

Concurrent programming is, by the nature of the model, a more challenging task than single-threaded
sequential programming. Programmers need to manage distribution of the tasks, non-deterministic
execution flows, and synchronization of the completion of the concurrent tasks.

The purpose of the Futures class, as a design concept, is to mitigate some of the cognitive burdens of
concurrent programming. Futures, as a higher abstraction of the thread of execution, offer means for
initiation, execution and tracking of the completion of the concurrent tasks.

One can think of Futures as objects that model a running task, unlike a synchronously executing function,
that will produce a result at some point in the future. Futures offer methods to query the status of the
running task and, if necessary, to shut it down.

Futures are not meant to be directly instantiated and executed by a programmer. One can think of Futures
as interfaces that can be queried but not instantiated directly. Futures are instantiated by submitting tasks
(functions with optional parameters) to Executors. Executors are launchers that initialize and start the
Futures.

Executors, in Python, are abstractions that are accessed through their subclasses: Thread or
ProcessExecutorPools.

Use of pools of threads and processes is another best design and implementation practice of concurrent
programming. Instantiation of threads and process is a resource-demanding task, so it is better to pool these
resources and use them as repeatable launchers or "executors" (hence the Executors concept) for parallel or
concurrent tasks.

Python Futures, Executors and ExecutorPools in Action

Let's look at some examples.

In this article, I will use a search over several files as an example of how can one use Futures and Executors
in Python to execute tasks suitable for concurrent execution.

Starting with the simplest tasks, I will introduce some of the most interesting functions of the
concurrent.future package, and we will move up a bit in increasing order of complexity.

Let's start with the simple example of running individually instantiated search tasks for three different
strings in three different files:

def basic_search():
 with concurrent.futures.ThreadPoolExecutor(max_workers=5) as
executor:
future1 = executor.submit(search, "test1.txt", "Test")
future2 = executor.submit(search, "test2.txt", "synergy")
future3 = executor.submit(search, "test3.txt", "Something Else")
print(future1.result())
print(future2.result())
print(future3.result())

In the example above, in the method basic_search() I instantiate a ThreadPoolExececutor named
executor with the keyword with:

with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:

Notice also that I instantiated executor pool with a max_workers=5 parameter. This indicates the maximum
size of the worker threads in the pool that will handle the execution of the concurrent tasks at the time.

Using executor pool, I submit three search jobs by passing into an executor's submit function, as
parameters, the name of the search function (file_search) and two arguments for the search function
itself (file name and string to search for):

future1 = executor.submit(file_search, "test1.txt", "Test")

The call to each submit returns a future. I get the results of each search task on the files by calling the
result() method on the future objects that were returned by the executor.

In this case, to process the results, I just print them:

print(future1.result())

In the example above, using the file_search function, I am simply returning a string indicating if the search
string was found with the index or match, but the actual scenario for the search task and return types can be
far more complex--futures as result of their execution may even return other futures. In addition, future
objects returned from the executor can also be queried for the execution status. This is accomplished with
the methods cancelled(), running() and done(). Futures may also be "asked" to halt with the
method cancel(). (I purposefully use the term "asked" because a program is, by design contract of most
threading libraries and underlying implementations, never guaranteed immediate control over the thread's
status of execution).

The above example, despite its intended triviality, demonstrates the typical pattern of use for objects
provided in concurrent.features package:

1. Call ThreadPoolExecutor to get an instance of the Executor.
2. Submit one or more routines into it.
3. Get as a result one or more Future objects.
4. Query Future object for the result of the execution.

Python Futures with Callbacks

In addition to the basic scenario with getting the result from the future, futures also support attachment of
the callback--the function that gets assigned to the future and that gets called when the future completes
execution.

Building up from the original basic example, here is how the parallel file search would be processed with
callbacks. In the example below, the function process_result is attached to the search futures as callback:

def with_callback():
 with concurrent.futures.ThreadPoolExecutor(max_workers=5) as
executor:
executor.submit(search, "test1.txt", "Test").add_done_callback(
 process_result)
executor.submit(search, "test2.txt", "Tset").add_done_callback(
 process_result)
executor.submit(search, "test3.txt", "Something").add_done_callback(
 process_result)

Note the use of the add_done_callback method. It attaches the method process_result to a future that is
returned from the call to submit on an executor.

The process_result method is an ordinary function that I implement to print the result of search returned
from a future. The only requirement for callback processing function is to accept a single future object as
its parameter.

def process_result(future):

print ("callback on result: " + future.result())

Mapped Submission in Python 3.2

In addition to submitting a function with parameters to an executor, we can alternatively "map" a function
onto a list of arguments (more precisely, map a function onto an iterable list of arguments).

In the example below, I use the executor to asynchronously apply the function search_file to each of the
file names provided by iterable files (a sequence of file name strings) and get the future result as the
outcome of each map application within an iteration of the for loop.

def mapped_search():

with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:

for result in executor.map(search_file, files):

print(result)

Waiting for All Futures to Finish

Finally, let's look at how the wait function, available as the module level function, can be used to process
results of all completed threads at the common synchronization point.

In the function parallel_search shown below, I submit a list of files into the executor to get a list of futures.
I then wait for all futures to complete using the function wait.

def parallel_search():

with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:

futures = [executor.submit(file_search, search_target, "Synergy")

for search_target in files]

results = concurrent.futures.wait(futures)

for completed in results.done:

print(completed.result())

Function wait by default indefinitely waits for all futures to complete, but it can alternatively accept the
Timeout parameter. The parameter represents the number of seconds and specifies how long to wait before
throwing an exception. It also can accept the return_when parameter, which specifies the criteria for
waiting. The parameter can be set to one of the following three conditions: ALL_COMPLETED (set by
default), FIRST_COMPLETED and FIRST_EXCEPTION.

The function wait returns a named tuple consisting of done and not_done sets of futures.

Done contains all the futures that have completed by the time wait has returned. These two sets are most
pertinent with FIRST_COMPLETED or FIRST_EXCEPTION option set.

Processing Futures Upon Their Completion

Use the as_completed method if your concurrent programming task demands processing of individual
futures as they complete their execution and in order of completion. The function as_completed accepts a
list of futures and returns iterable which returns futures iteratively as each of the futures completes and in
order of completion. as_completed accepts the optional Timeout parameter as well.

for future in concurrent.futures.as_completed(search_futures):

process_results(future)

Other Python 3.2 Features

This article focused on threads, but the concurrent.futures package also offers ProcessPoolExecutor objects
for instantiation and execution of processes instead of threads. The pattern of use is the same as with

threads, except for the different executor object use and a requirement that all submitted tasks must be
picklable.

In the terminology of the operating system, the term "process" refers to an operating system level task that
has its own stack and heap space and that is managed by the operating system scheduler. "Threads,"
however, can be purely within-process tasks that may or may not be visible to the operating system at all.
Visibility of the threads depends on the implementation of the operating system, the compiler, the threading
library used and the virtual machine that runs the interpreted program -- if applicable. System resources
wise, tasks are more intensive and more expensive to manage and instantiate.

Futures also capture exceptions, and they can be checked for using the method exception() of the
future object. The wait() and as_completed() functions can raise TimeoutErrors when Timeout is
specified, so these need to be checked as well.

