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ABSTRACT
We present a new image search and ranking algorithm for retriev-
ing unannotated images by collaboratively mining online search re-
sults, which consist of online image and text search results. The
online image search results are leveraged as reference examples to
perform content-based image search over unannotated images. The
online text search results are utilized to estimate individual refer-
ence images’ relevance to the search query as not all the online im-
age search results are closely related to the query. Overall, the key
contribution of our method lies in its capability to deal with unreli-
able online image search results through jointly mining visual and
textual aspects of online search results. Through such collaborative
mining, our algorithm infers the relevance of an online search result
image to a text query. Once we estimate a query relevance score for
each online image search result, we can selectively use query spe-
cific online search result images as reference examples for retriev-
ing and ranking unannotated images. To explore the performance
of our algorithm, we tested our algorithm both on the standard pub-
lic image datasets and several modest sized personal photo collec-
tions. We also compared the performance of our method with that
of two peer methods. The results are very positive, indicating that
our algorithm is superior to existing content-based image search al-
gorithms for retrieving and ranking unannotated images. Overall,
the main advantage of our algorithm comes from its collaborative
mining over online search results both in the visual and textual do-
mains.
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1. INTRODUCTION
Today, managing photos is everybody’s task, which by no means

is an easy one. Using the mainstream image search tools, which
mostly rely on traditional text based retrieval methods, is cumber-
some and often frustrating because ordinary photos are rarely an-
notated. If there are indeed annotations, they tend to be quite brief,
subjective, and biased.

To enable searching and ranking unannotated images, we intro-
duce a new content-based image retrieval algorithm by leveraging
online image search results as reference examples to inform and
guide the unannotated image search and ranking process. A key
feature of our algorithm is its capability of automatically inferring
the relevance of an online image search result to its correspond-
ing textual query through collaboratively mining both visual con-
tents of and text clues associated with the online image search re-
sult. Such an image-to-query relevance estimation step enables our
method to cope with noise and outliers in the online image search
results. With the respective image-to-query relevance estimated for
each reference image obtained from the online image search step,
we can further derive an arbitrary unannotated image’s relevance
to a textual query according to the unannotated image’s collective
visual similarity with the entire reference image set. We calculate
the collective visual similarity between an unannotated image and
the reference image set by accumulating the individual pairwise
visual image similarity between the unannotated image and each
example image in the reference image set. During this accumula-
tion process, we also take into account the query relevance score
of each reference image example itself. Overall, an unannotated
image that has higher visual similarities with more query relevant
example images tends to obtain a higher collective visual similar-
ity score. Finally, based on our derived collective visual similar-
ity score for each candidate unannotated image with respect to the



reference image set, we can search and rank all the unannotated
images accordingly.

2. RELATED WORK

2.1 Content-Based Image Retrieval
Fergus et al. [9] proposed a method that dynamically derives

a visual object model through learning from Google image search
results. Their method however does not leverage the annotations
or description text of an online image. Popescu et al. [1] pro-
posed a content-based image retrieval method using an ontology
driven approach for improving image retrieval precision. Kidambi
and Narayanan [17] introduced a human computer integrated ap-
proach for content-based image retrieval, taking advantage of user
feedbacks. Hsiao et al. [12] represented an image as a visual bag-
of-words followed by a relevance feedback scheme for ranking im-
ages. Jing and Baluja [15] adapted Google’s PageRank algorithm
for product image search. Their approach is based on image sim-
ilarities estimated from low-level visual features proposed in [23].
Compared with our algorithm, their method does not look into the
text clues associated with an image. Liu et al. [22] gave a high-level
overview of content-based image retrieval research from the per-
spective of semantics understanding. For more comprehensive re-
views on recent progress in content-based image retrieval and web
image search, readers are referred to [27, 16, 5, 22, 28, 24]. These
also exist abundant surveys on domain specific content-based im-
age retrieval methods and systems, e.g. Muller et al.’s survey [25]
on content-based image retrieval for medical applications.

2.2 Image Search and Re-Ranking through
Mining Text Clues

Lin et al. contributed a probabilistic model based algorithm [19]
for re-ranking image search results according to images’ surround-
ing texts. Our algorithm does more—it also explores the visual
content of an image. Cai et al. [3] proposed a hierarchic image clus-
tering method through jointly analyzing visual, textual, and link in-
formation of an image. However, their algorithm is proposed for
clustering images, which cannot be directly applied to retrieving
or re-ranking images. Zhou and Huang’s image retrieval algorithm
[31] jointly uses the keyword and the visual content of an image for
image retrieval. But their method uses reference images in isolation
during the image retrieval process whereas our algorithm considers
the collective image similarity between a given candidate unanno-
tated image and an entire reference image set. Jia et al. [14] pro-
posed a personal album annotation algorithm. Their algorithm and
Feng et al.’s [7] algorithm, similar to ours, use clues from the visual
content and HTML text of an image for image content understand-
ing. Jia et al.’s method is a supervised learning approach, which
needs a set of pre-labelled images as training samples, whereas our
method does not need any human labels. Feng et al.’s method in-
dependently trains two separate classifiers, one using text features
and the other using visual features of an image. In contrast, our
method collaboratively analyzes the visual and text aspects of on-
line image search results in one unified procedure. Through our
integral analysis based on image and text data fusion, our method
can adaptively prioritize relevant online reference images. As a re-
sult, our algorithm can deal with noisy reference image samples
more superbly than Feng et al.’s algorithm, which will be proved
through our experiments. Recently, Liu et al. [20] [21] developed
a textual query based personal photo retrieval system, which also
uses web image search results to facilitate querying unannotated
personal photos. However, their method focuses on leveraging the
relevance feedback strategy to deal with the noisy unreliable on-

line image search results. In contrast, our method collaboratively
mines the visual contents and text clues accompanying each online
image search result to discriminate reliable online image search re-
sults from irrelevant ones. Compared with their relevance feedback
based strategy, which requires end user participation, our method
can autonomously apply online image search results in a selected
manner to guide the unannotated image search and ranking pro-
cess. The hybrid mining feature of our algorithm allows our method
to automatically cope with the noisy and unreliable nature of web
image search results. It is likely to further strengthen the image
search capability of our algorithm by adopting the relevance feed-
back strategy proposed in Liu et al.’s work, which is a meaningful
topic for future exploration. Fergus et al. [8] proposed an algorithm
that learns object categories from Google’s image search results.
The key part of their algorithm is a model that considers spatial and
scalar information of images for learning the potential categories
and tags of Google search result images. They also incorporatd an
incremental learning algorithm [18] into their method to support
relevance feedback by end users. People have also explored the
idea of mining web text search results for establishing tagged im-
age databases. For example, Schroff et al. [26] proposed to build
image databases by collecting images within webpages of web text
search results. In their method, they utilize the textual contents of
web search results for image tag identification and selection.

3. OUR METHOD

3.1 Finding Reference Images for an Image
Query through Online Image Search

Given a textual query Q, we first use a third party commercial
image search engine (Google Image Search in our current imple-
mentation) to perform an online image search. The purpose is to
acquire a set of reference images to perform content-based image
search over the candidate unannotated image set. Assume there
are ζ(Q) reference images obtained for the input image query Q,
which are organized as a reference image set G(Q) , {G1(Q),
G2(Q), · · · , Gζ(Q)(Q)}, where each Gi(Q) is an online search
result image.

It is commonly understood that not all the online image search
results are closely related to the query; some are completely irrel-
evant. Treating these noisy online search result images as equal
reference samples will introduce great noise and instability to our
content based image search process. To overcome this problem, in
our method, we estimate each reference image’s relevance to the
image search query. The resultant image-to-query relevance scores
can help our algorithm differentiate reference images from noisy or
irrelevant ones, for improving the overall accuracy and reliability of
our method. In Sec. 3.2–Sec. 3.4 below, we will explain how we
estimate reference images’ query relevance through collaboratively
mining online search results, both in the text and image domains.

3.2 Estimating Initial Image-to-Query
Relevance for Reference Images

To estimate each reference image’s relevance to a text query Q,
we first compare the similarity between the text context associated
with the reference image and the text context of Q. Our assump-
tion is: the more aligned the two types of text context are, the more
likely that the reference image reflects the image search intent ex-
pressed by the text query Q. In the following, we will explain
details of our text analysis based initial image-to-query relevance
estimation procedure.



3.2.1 Characterizing word frequency distribution in
online text search result

Given a text query Q, we first submit the query to Google (text)
search and retrieve the top N text search results. In our experi-
ments, the typical value assignment forN ranges between [100, 500],
which shall never exceed the total number of search result docu-
ments returned by Google for the query. Let the j-th text search
result document be Dj (j ∈ [1, N ]). All these search result doc-
uments formulate an online text search result set of Q, denoted as
D(Q) , {D1, D2, · · · , DN}. Next, we derive non-stop words’
frequency distribution in D(Q) to characterize these words’ re-
spective importance. To balance between text search result docu-
ments with different lengths, we work with relative word frequency
rather than absolute word frequency. The derivation process for a
word’s relative frequency is as follows: assume a non-stop word
wdi occurs yi,j times in the document Dj and the total occurrence
times of all the non-stop words in Dj is mj . We then calculate the
relative word frequency of wdi in Dj as yi,j

mj
. One step further, we

accumulate wdi’s relative word frequencies for all the documents
in D(Q) and treat the sum as wdi’s accumulated relative word fre-
quency, ti(Q), i.e. ti(Q) ,

∑N
j=1

yi,j
mj

. In addition, we introduce
an inverse word frequency term for each non-stop word in D(Q).
Assume ni is the total number of documents containing the word
wdi in D(Q). Then, the word wdi’s inverse word frequency term
with respect to D(Q) is formulated as ln(1+ N

ni
). Given wdi’s ac-

cumulated relative word frequency term ti(Q) and its inverse word
frequency term ln(1 + N

ni
), we follow the TF–IDF rule and use

the product of the two terms, ti(Q) ln(1 + N
ni

), to indicate the im-
portance of wdi. Finally, we organize the TF–IDF terms of all the
non-stop words occurring in D(Q) as a vector Ωtext(Q), i.e.

Ωtext(Q) ,
(
t1(Q) ln(1 + N

n1
), t2(Q) ln(1 + N

n2
),

· · · , tV (Q)(Q) ln(1 + N
nV (Q)

)
)
,

(1)

where V (Q) is the number of distinct non-stop words in D(Q).

3.2.2 Characterizing word frequency distribution
associated with online image search results

It is noted that each reference image in our method is obtained
through an online image search process. A property of images ob-
tained in this way is that every image is linked back to its source
webpage where we can obtain surrounding text for the image. De-
note a reference image Gj(Q)’s source webpage as Pj(Q). The
source documents of all the webpages associated with the online
image search results G(Q) form a document setD′(Q) , {P1(Q),
· · · , Pζ(Q)(Q)}. For each non-stop word wdi that occurs in the
source document of the webpage Pj(Q), we also calculate its rela-
tive word frequency among all the non-stop words occurring in the
source document and denote the result as fi,j(Q). In a similar pro-
cedure as described in Sec. 3.2.1, we also derive a non-stop word
wdi’s inverse word frequency with respect to the webpage source
document set D′(Q) as ln(1 + ζ(Q)

n′i
) where n′i is the total number

of webpage source documents containing the non-stop word wdi.
We organize the calculated relative word frequencies and inverse
word frequencies for all the non-stop words occurring in Pj(Q) as
a V ′j (Q) dimensional vector Ωimg(Q), assuming there are V ′j (Q)
distinct non-stop words appearing in Pj(Q). That is,

Ωimg,j(Q) ,
(
f1,j(Q) ln(1 + ζ(Q)

n′1
), f2,j(Q) ln(1 + ζ(Q)

n′2
),

· · · , fV ′j (Q),j(Q) ln(1 + ζ(Q)
n′
V ′
j
(Q)

)
)
.

(2)

3.2.3 Measuring the semantic alignment between two
types of text context

Previously in Sec. 3.2.1 and Sec. 3.2.2, we have derived two
types of text context, one from the online text search results and the
other from the webpage source document associated with an online
image search result. We have also looked at how to characterize
the two types of text context via their respective word frequency
distribution vectors Ωtext(Q) and Ωimg,j(Q). Next, we will derive
an online reference image Gi(Q)’s relevance to its query Q, which
is denoted as ri(Q), by measuring the semantic alignment between
the two types of text context through computing the inner product
of their respective word frequency distribution vectors. That is,

ri(Q) , Ωtext(Q)ΘiΩ
T
img,i(Q), (3)

where Θi is a V (Q) × V ′i (Q) dimensional matrix whose element
on the u-th row and v-th column is the semantic relatedness be-
tween the u-th non-stop word in the online text search results and
the v-th non-stop word in Pi(Q), measured by the algorithm pro-
posed in [10]. We then treat the resulting ri(Q) as our initially
estimated image-to-query relevance for the online reference im-
age Gi(Q). We organize all the estimated initial reference image
to query relevance as a ζ(Q) dimensional vector, i.e. Rinit(Q) ,(
r1(Q), r2(Q), · · · , rζ(Q)(Q)

)
. The reason why we call this ini-

tial relevance estimation is because not all the reference images ac-
quired through online image search are accompanied with quality
annotation text. Such unreliability in the surrounding text of online
reference images will surely affect the quality of our text analysis
based image to query relevance estimation, a problem commonly
suffered by nearly all annotation text based image search methods.
Hence we call the above estimation on online reference images’
relevance to the textual query the initial estimation. In the next, we
will discuss how to refine this initial estimation.

3.3 Measuring Pairwise Reference Image
Similarity

Given the initial image-to-query relevance estimation for all the
reference images, we then refine the estimated image-to-query rel-
evance through conducting an image content similarity based prop-
agation procedure, which will be presented in Sec. 3.4. A key ele-
ment involved in performing the procedure is to measure pairwise
image similarity between reference images. In our method, we in-
troduce a visual patch set based pairwise image similarity estima-
tion method, which collaboratively mines the online text and image
search results to more informedly derive the estimation.

In our method, we calculate pairwise reference image similarity
through analyzing image content similarity on the granularity of
visual patch sets rather than on the whole image level. Such finer
granularity offers us a more elaborate analysis capability, which
shall be clear shortly. To extract visual patch sets from the reference
image set, we first apply the feature extraction algorithm proposed
in [2] to obtain a collection of visual patches for every reference
image in the reference image set G(Q). These visual patches are
defined as Speeded-Up Robust Features (SURF), each of which in-
cludes a circular effective feature region and a feature descriptor.
More concretely, we represent a visual patch v as v = (C,Des),
where C represents v’s circular effective feature region, and Des
is v’s feature description vector. We further define the distance be-
tween two visual patches as theL2 distance between the description
vectors of the two visual patches. Two visual patches are consid-
ered identical if their L2 distance is below 0.01.

Based on the concept of visual patches introduced above, we
further introduce the concept of visual patch sets. A visual patch set
is defined as a set of visual patches detected from an image whose



circular regions are overlapping. Formally, we define a visual patch
set of size l as:

φ , (v1, v2, · · · , vl), (4)

where vi = (Ci, Desi) and ∀i, j = 1, 2, · · · , l, vi connects with
vj . Here the relationship connects with is defined as follows:

vi connects with vj ⇐⇒
Ci ∩ Cj 6= ∅

or
∃vk ∈ φ, s.t. Ci ∩ Ck 6= ∅, Cj ∩ Ck 6= ∅

. (5)

In the above, ∅ represents an empty set. In the following, we use
the notation |φ| to denote the size of the visual patch set φ.

Finding all the visual patch sets contained in a reference im-
age set incurs an exponential amount of computational overhead.
Fortunately, we only need to derive some most frequently occur-
ring visual patch sets in our method as they provide the most es-
sential evidence for estimating pairwise image similarity. Calcu-
lating frequently occurring visual patch set is a much more af-
fordable computational task. In our method, we extracted visual
patch sets from all the reference images in G(Q) whose occur-
rence numbers exceed a certain threshold using the method pro-
posed in [30]. A typical threshold value used in our experiments
is 5. Two visual patch sets are identical if they contain the same
set of constituent visual patches. Let φi(Q) denote a frequent vi-
sual patch set detected from the reference image set G(Q). All the
frequently occurring visual patch sets detected from the reference
image set G(Q) are organized as a collection, which is denoted
as Φ(Q) , {φ1(Q), φ2(Q), · · · , φz(Q)(Q)}, assuming there are
z(Q) frequent visual patch sets contained in the reference image
set G(Q).

It is noted that in [30], the authors also proposed to use visual
patch sets to estimate pairwise image similarity. Different from our
method, their algorithm only detects visual patch sets containing no
more than two patches; while our algorithm explores visual patch
sets of all sizes. The reason why their algorithm tightly limits the
size of visual patch sets considered is because their algorithm re-
lies on extracting visual patch sets from a large number of sample
images to perform content-based image search, an image collection
that aims to work universally for all the queries. Such an algorithm
design feature incurs a very expensive amount of computational
overhead in visual patch set extraction. In contrast, our algorithm
is designed to use a much smaller set of sample images acquired
from online image searches in a query specific manner. The query-
specific nature of our algorithm’s reference image acquisition pro-
cess allows us to work with a very limited number of sample im-
ages each time for performing content-based image retrieval. Such
careful control of reference image set size successfully restricts the
time spent on extracting visual patch sets from the reference image
set. This algorithm feature enables us to explore visual patch sets of
larger sizes in our method, leading to a richer set of image features
for image content understanding.

Once we detect visual patch sets from all the reference images,
we can then analyze those patch sets commonly occurring in a
pair of reference images for estimating pairwise image similar-
ity. This practice is inspired by the classic TF × IDF based
document similarity measurement method [29]. Borrowing their
idea for document similarity estimation in the text domain, in our
method, we attempt to estimate pairwise image similarity through
counting the common visual patch sets existing among two im-
ages and in a weighted way, prioritizing co-occurrence of salient
visual patch sets. The assumption is, the larger number of salient

visual patch sets commonly existing among two reference images,
the more similar the two images are.

3.4 Refining Image-to-Query Relevance
Estimation for Reference Images

Based on the pairwise reference image similarity estimation method
introduced in the previous subsection, we will now introduce a
multi-step propagation procedure to refine the initial image-to-query
relevance estimation for reference images. We call the resultant es-
timation the refined image-to-query relevance. Our work is inspired
by the recent work on product image ranking by Jing and Baluja,
who modified the traditional Pagerank algorithm for ranking im-
ages through an iterative process [15].

First, we construct a pairwise image similarity matrix Sζ(Q)×ζ(Q),
where the element on the i-th row and the j-th column of Sζ(Q)×ζ(Q)

is the image similarity between the i-th and the j-th reference im-
ages, Gi(Q) and Gj(Q). The pairwise image similarity is esti-
mated using the method introduced in Sec. 3.3. Noticing that the
more steps we take in propagating a belief, the less reliable the
propagated belief tends to be, we penalize the results obtained with
more steps of propagation using an attenuation factor β. To for-
mally define this multi-step propagation process, we employ the
matrix exponent notation [11], as follows:

Rrefined , eβSRinit

= (Iζ(Q)×ζ(Q) + βS + β2S2
2!

+ β3S3
3!

+ · · · )Rinit,
(6)

where Sζ(Q)×ζ(Q) is the pairwise image content similarity matrix;
Rinit and Rrefined are respectively the initial and refined estimated
image-to-query relevance for all the reference images; β is the
propagation attenuation constant. A typically value assignment for
β, as used in all our experiments reported in this paper, is 0.3.

The propagation procedure described in (6) can be concisely rep-
resented as Rrefined , eβSRinit, where the matrix exponent can be
efficiently computed by observing the fact that S is symmetric.
Therefore, we can decompose S as S , QDQ−1, where Q is an
orthogonal ζ(Q) × ζ(Q) matrix containing the eigenvectors of S,
and D is an ζ(Q)× ζ(Q) diagonal matrix containing the eigenval-
ues of S. We can then rewrite eβS as follows:

eβS = I + βQDQ−1 + β2(QDQ−1)2

2!
+ β3(QDQ−1)3

3!
+ ...

= I + βQDQ−1 + β2QD2Q−1

2!
+ β3QD3Q−1

3!
+ ...

≈ I + βQDQ−1 + β2QD2Q−1

2!
+ β3QD3Q−1

3!

+β4QD4Q−1

4!
+ β5QD5Q−1

5!
,

(7)
According to this new representation, the matrix exponentiation
can be efficiently computed by an eigenvalue decomposition pro-
cess followed by a few matrix multiplication and addition opera-
tions. As mentioned earlier, the constant β here is the propagation
attenuation parameter that penalizes results obtained through mul-
tiple steps of propagation.

Combining (6) and (7), we have:

Rrefined = eβSRinit ≈ (I +

5∑
i=1

βiQDiQ−1

i!
)Rinit. (8)

Each time when a query Q is submitted, the initial image-to-query
relevance score Rinit is first estimated and then the correspond-
ing Rrefined can be derived through matrix multiplications and ad-
ditions according to (8). The i-th component of Rrefined is denoted



as rrefined
j (Q), which represents the j-th reference image Gj(Q)’s

relevance to the query Q.

3.5 Retrieving and Re-Ranking Unannotated
Images

Given an arbitrary unannotated image Ix, to estimate Ix’s rel-
evance to the textual query Q, we refer to a set of highly similar
reference images to Ix and use these reference images’ query rel-
evance for estimating Ix’s relevance to the query. Our idea is to
leverage the “intelligence of the crowd,” i.e., if multiple reference
images that are highly relevant to the query exhibit a high visual
similarity with Ix, Ix is then more likely to be closely related to the
query too.

More concretely, given a textual query Q, we perform an online
image search to obtain a collection of reference images G(Q) =
{G1(Q), G2(Q), · · · , Gζ(Q)(Q)} (Sec. 3.1). In Sec. 3.2–Sec. 3.4,
we have explained our method for estimating an arbitrary refer-
ence image Gj(Q)’s relativeness to the query Q, which is denoted
as rrefined

j (Q). We have also explained our method to extract fre-
quent visual patch sets from G(Q), which are denoted as Φ(Q) =
{φk}, where each φk is an extracted frequent visual patch set (see
Sec. 3.3).

For each visual patch set φk, we first estimate its relevance to the
query Q. Since we have estimated each reference image Gi’s rele-
vance to the query Q, our method then estimates each visual patch
set’s relevance to the query by distributing the image to query rele-
vance to the individual visual patch sets’ relevance to the query. To
realize the above idea, we first estimate the salience of each visual
patch set contained in a reference image Gi. Again, we borrow the
traditional TF–IDF scheme in the text processing domain for char-
acterizing a visual patch set’s salience. Let mj(φk) be the number
of times the visual patch set φk occurs in the j-th reference image
Gj(Q). Then we can mimic the TF term for the visual patch set
φk as (1 + lnmj(φk)). Let m(φk) be the number of images in the
reference image collection G(Q) that contain the visual patch set
φk. Then we can emulate the IDF term for φk as ln(1 + ζ(Q)

m(φk)
).

Recall that ζ(Q) is the total number of images in the reference im-
age collection. Overall, we define the TF–IDF term for the visual
patch set φk as (1 + lnmj(φk)) ln(1 + ζ(Q)

m(φk)
). We can then cal-

culate the relative salience of the visual patch set φk among all the
visual patch set contained in the reference image Gi as follows:

ρ(φk) =
(1 + lnmj(φk)) ln(1 + ζ(Q)

m(φk)
)∑

φt∈Φ(Q)(1 + lnmj(φt)) ln(1 + ζ(Q)
m(φt)

)
. (9)

According to the relative salience of each visual patch set contained
in Gi, we then proportionally attribute Gi’s relevance score to the
queryQ to individual visual patch sets present in the image. That is,
the fraction of query relevance score allocated for the visual patch
set Φk is rrefined

j (Q)ρ(φk). Recall that rrefined
j (Q) is the j-th refer-

ence image Gj(Q)’s refined estimated relevance score to the query
Q. Finally, we derive φk’s overall relevance score to the query, de-
noted as θ(φk, Q), by summing up the fractional relevance scores
φk acquired from all the reference images, i.e.:

θ(φk, Q) =

ζ(Q)∑
j=1

rrefined
j (Q)ρ(φk). (10)

With every visual patch set’s query relevance estimated through
(10), we can now estimate an unannotated image Ix’s image-to-
query relevance, denoted as θ̂(Ix, Q), based on the query relevance

of all the visual patch sets carried in Ix, as follows:

θ̂(Ix, Q) =
∑
φk∈Ix

θ(φk, Q), (11)

Overall, via (11), we can estimate an unannotated image’s relative-
ness to a textual query through weighted sum of the query relevance
of all the visual patch sets present in the image.

Finally, given an input query Q, each search candidate image Ix
will be assigned a query relevance score θ̂(Ix, Q) via (11). Those
candidate images whose estimated query relevance scores are above
a certain threshold will be returned as image search results for the
query. All the search result images are also ranked in a descendent
order according to each image’s estimated query relevance score.

4. EXPERIMENTAL RESULTS
We invited eight volunteers to participate in our experiments con-

ducted on two standard image datasets: the Caltech101 image col-
lection [6] and MIRFLICKR collection [13]. We compared the
measured performance of our algorithm with two peer content-
based image retrieval algorithms. All our experiments were per-
formed on a desktop computer with 2.66GHz Intel Core 2 Duo
CPU and 2GB main memory, running Windows XP.

4.1 Evaluation Metric
We evaluate the quality of an image search and ranking result

by adopting the normalized discounted cumulative gain (NDCG)
metric. The participating users would assign a numerical label to
each of the top Ntop search result images to indicate their opin-
ions on these images’ relevance to the corresponding queries. The
numeric label, in [0, 1], represents the image’s relevance with the
query (1: “fully relevant”; 0: “fully irrelevant”). For those image
search experiments performed on the standard image collections,
since all the images in the collection have been carefully classified
and labeled, we automatically assign a binary value of either 0 or 1
to indicate whether a search result image is relevant to the query or
not. In all the experiments reported in this paper, we confine Ntop
to be no more than 50.

4.2 Execution Efficiency
Much of the execution time of our algorithm is spent on down-

loading online reference images through Google image search. For
a typical query performed in our experiments for the Caltech101
data set, we use the top 50 images retrieved from Google image
search as the reference image collection, i.e. ζ(Q) = 50. Ta-
ble 1 shows the run-time breakdown statistics for each part of our
algorithm. The exact duration of downloading time needed varies
from query to query, which also heavily depends on the quality of a
particular user’s Internet connection condition. For real world de-
ployment, our algorithm can run on the server side in order to avoid
the reference image downloading time. Therefore, in our analysis,
we exclude the online reference image downloading step.

4.3 Image Retrieval on Standardized Image
Sets

The Caltech101 image collection contains 8677 images, pre-labelled
with 101 textual tags, which has been widely used as benchmark for
image retrieval and object recognition. We used each textual tag as
the image query keyword and took all the 8677 images in the entire
Caltech101 image collection as the candidate image search result
set. Therefore, all together, we performed 101 sessions of image
retrieval experiments over the collection. At the end of each image
querying experiment, we evaluate the performance of our algorithm



Algorithm Step Execution Time
Step 1: Download reference images ISP-dependent
Step 2: Estimate initial image-to-query

relevance for reference images 20 ∼ 30 sec.
Step 3: Detecting visual patch sets 10 ∼ 40 sec.
Step 4: Refine image-to-query

relevance for reference images < 1 sec.
Step 5: Retrieve and rank unannotated

images < 1 sec.

Table 1: Run-time breakdown of different components of our
algorithm for performing a typical image search query in our
experiments. We report the time consumed by every step of our
algorithm individually.

by calculating its NDCG score for the image querying session. If
the search result image comes from the then chosen image class, it
is considered a correct image retrieval result; otherwise, it is a false
retrieval result. We also perform the same image query sessions on
MIRFLICKR collection, which consists of 25000 pre-tagged im-
ages that were used in recent years’ ImageCLEF corss language
image retrieval tasks [4].

For comparison purpose, we also implemented two recent image
retrieval algorithms respectively proposed in [21] and [7], abbrevi-
ated as “LXTJ” and “FSC” in our following discussions. We chose
these two algorithms as peer methods for our comparative stud-
ies because both prior algorithms share the same idea of mining
online information for image search as our method does; the two
peer algorithms also achieve today’s leading performance among
all existing methods for image search. During our comparison, we
applied the three algorithms respectively over the Caltech101 and
MIRFLICKR collections for image retrieval experiments. Note that
the “FSC” algorithm requires a labelled training set. We employed
the 10-fold cross validation as our evaluation strategy.

4.4 Comparing Algorithm Performance
without Relevance Feedback

In Figure 1(a) and Figure 2(a), we report the NDCG scores ob-
tained by three algorithms respectively over the image querying
sessions. All these results are generated by following a fully auto-
matic way, i.e. no user feedback is provided for algorithms. From
these results, we can clearly see that our algorithm consistently out-
performs the other two algorithms.

4.5 Comparing Algorithm Performance with
Relevance Feedback

In practice, a frequent strategy for improving the performance of
an image retrieval system is to incorporate relevance feedback. For
example, “LXTJ” proposed a relevance feedback based approach
to enhance their image classifiers’ performance interactively via
cross-domain learning. To explore our algorithm’s image search
capability and potential more thoroughly, we also conduct exper-
iments with relevance feedback. In our comparative study, we
perform three rounds of relevance feedback when executing each
query. In each feedback round, a user randomly selected from our
participation group is asked to mark one relevant image and one ir-
relevant image among the topNtop (usually 50) images in the query
result. For the algorithm of “LXTJ,” their method is designed with
a relevance feedback module and hence can directly use the pro-
vided relevance feedback data to improve its image search result.
Our algorithm however is not equipped with a relevance module
because we focus on providing a fully automatic mechanism for

(a) without relevance feedback (b) with relevance feedback

Figure 1: NDCG scores of image search experiments conducted
over the MIRFLICKR image set using “LXTJ,” “FSC,” and
our algorithm respectively. We illustrate the key statistics of all
the NDCG scores using boxplots.

image search, aiming at the most convenient user experience. For
a fair comparison, when comparing search results of our algorithm
with those of LXTJ under the relevance feedback setting, we in-
troduce a trivial relevance feedback step for our algorithm — if
a user indicates a negative search result item, i.e. the item is not
related to the query, we will simply remove the item from the re-
turned search image list. If a user indicates a positive search result
item, our algorithm will simply ignore the user input. Figure 1(b)
and Figure 2(b) report the respective NDCG scores of image search
experiments performed over two public image datasets by our al-
gorithm and LXTJ with a three-round user feedback. The results
show that our algorithm still outperforms the LXTJ algorithm with
three rounds of user feedback.

4.6 Comparing Algorithm Performance with
Query Keywords Extended

We aim to more realistically emulate users’ image search be-
haviors and scenarios in reality. This time, when doing an image
retrieval, instead of using the original query keyword, we use a syn-
onym of the keyword as the query text. For example, for the query
keyword of “lotus,” we use “lily” or “lily lotus” or “lotus flower”
or “water-lily” as the query text in our image retrieval experiments.
For this new set of experiments, we randomly selected 10 image
tags from the Caltech101 collection as our retrieval target objects to
perform ten image retrieval experiments, one experiment for each
tag. In each experiment, we invited five volunteers. We asked each
volunteer to give a few words that could best describe the common
content of a few randomly selected images from the same image
tag in the Caltech101 collection. In this process, we hide the orig-
inal image tag to these volunteers; and the answer given by each
volunteer is kept hidden from other volunteers. Therefore, each
volunteer needs to come up with a name for the image tag inde-
pendently. For each image tag, if there is a word that appears in
at least three volunteers’ description texts, we will accept the word
as a commonly agreed user nominated search query for the image
query. If there are more than one word commonly named by more
than three volunteers during our image querying experiments, we
will randomly choose one word as the keyword to compose the im-
age query. We designed this set of experiments to emulate image
search scenarios in reality when the query text submitted by the end
user does not use exactly the same word as the labels of an online



(a) Experiments without relevance feedback on Caltech101

(b) Experiments with relevance feedback on Caltech101

(c) Box-plots of (a) (d) Box-plots of (b)

Figure 2: NDCG scores of 101 image search experiments con-
ducted over the Caltech101 image set using “LXTJ,” “FSC,”
and our algorithm respectively. We report the NDCG scores
for all 101 image search sessions (a), (b) and also illustrate their
key statistics using boxplots (c), (d). For easy reading, all the
NDCG scores are sorted in the ascending order according to
the NDCG score of our method. In (a) & (c) we compare our
algorithm’s performance with that of LXTJ and FSC, all with-
out using any relevance feedback measurement; in (b) & (d) we
compare the performance of our algorithm and that of LXTJ,
both using three rounds of relevance feedback.

User Nominated
Image Tag Query Keywords

brain neuron nervous
cannon gun weapon

dollar bill dollar money
ferry ship boat

laptop notebook computer
menorah candle candelabrum

motorbike motorcycle pedal bicycle
pyramid Egypt triangle
stop sign sign car sign
sunflower flower flora

(a)

(b)

Figure 3: Statistics of the NDCG scores attained by “LXTJ,”
“FSC,” and our method respectively, in our experiments simu-
lating real-world user search scenarios. (a) lists user nominated
query keywords. In (b), we illustrate NDCG scores using box-
plot diagrams, where the box-plots “Basic” and “Extended” re-
spectively indicate search scores achieved by our method when
we use the exact image class names (basic) and the user nomi-
nated keywords (extended) as image search queries to perform
image searches. We also provide search scores achieved by
“LXTJ” and “FSC” for image searches using user nominated
search keywords for comparison.

image. For the “FSC” algorithm, again half of images in each class
of Caltech101 were used as the training set and the rest half were
used as the testing set. Figure 3 shows key statistics on the results
of our image search experiments achieved by all three algorithms.
These results again demonstrate the superiority of our algorithm to
the other two peer methods.

4.7 Image Retrieval on Personal Photo
Collections

Eight volunteers were invited to use the prototype image search
system that implements our algorithm to retrieve images from their
respective personal photo albums. The number of photos in a vol-
unteer’s personal photo album is between 500 and 4000. The num-
ber of photos in the eight volunteers’ personal photo albums are
1172, 729, 2305, 671, 1380, 2768, 3884, 3374 respectively.

We asked every volunteer in our study to perform 30 image searches.
For each volunteer, his or her 30 image search queries were for-
mulated by the volunteer himself or herself by freely choosing 30
search keywords. We then ranked all the image search query words
suggested by the eight volunteers according to the frequency that
a query word was commonly suggested by multiple users. Once
all the query words were ranked, we selected the top 20 most fre-



quently suggested query keywords. Figure 4(a) lists these twenty
image query keywords used in our experiments. Figure 5 shows
some example image search results by our algoirthm in our per-
sonal photo retrieval experiments. We performed image searches
using these query words over each user’s personal photo collec-
tion. After that, we manually evaluated the NDCG score for each
query performed over a user’s personal photo collection, as intro-
duced earlier in Sec. 4.1. For each user, we performed twenty im-
age search sessions, where each time we use one of the twenty
image search keywords as the image search query and performed
the search session over the user’s personal photo collection. Hence
for each user, we obtained twenty NDCG scores, one for each im-
age query session performed. Figure 4(b) reports the key statistics
on the distributions of these twenty NDCG scores attained by our
method for personal photo search experiments performed for every
user respectively.

For comparison purpose, we also report the NDCG scores of per-
sonal image retrieval experiments, performed using “LXTJ” and
“FSC” respectively, under the same experiment setup. For the “FSC”
algorithm, we notice that the algorithm can’t be run in a straight-
forward way on a personal photo album because it needs a labelled
training set. To enable the “FSC” algorithm to run in our compar-
ison, we first retrieved the top 500 images for each query keyword
using Google image search as its training set. In Figure 4, we use
yellow, red, and blue boxplots to respectively illustrate the statistic
distributions of search scores obtained using “LXTJ,” “FSC,” and
our algorithm when performing twenty personal image retrieval
sessions for every user in our study. According to results shown
in the figure, for all the subjects in our user study, the image search
scores obtained using our algorithm are noticeably higher than the
image search scores of the other two peer methods, which demon-
strates the general superiority of our algorithm to the two existing
methods for retrieving unannotated personal photos.

5. CONCLUSION
We introduced a new content-based image search and ranking

algorithm for unannotated images. Our algorithm infers the rel-
evance of an unannotated image to a text query through a set of
reference images from online image search. To deal with noisy ref-
erence image samples, we introduced an elaborate joint text anal-
ysis and image visual content analysis procedure to set apart the
good and the bad (i.e., irrelevant) reference images. Then through
a weighted visual phrase based scheme, we transfer the image-to-
query relevance information on the reference images to an arbitrary
unannotated image. The transfer relevance is then used to retrieve
and rank unannotated images. The experimental results convinc-
ingly show the effectiveness and advantages of our new algorithm
for searching unannotated images given an input textual query.

In the future, we plan to explore advanced machine learning al-
gorithms to more reliably and comprehensively understand seman-
tics of an unannotated images for content-based image search. We
also plan to design some intelligent and friendly user interface that
can leverage user feedback or utilizes some social tags to improve
the retrieval quality through online learning. We plan also to extend
our algorithm to automatically and efficiently annotate unlabelled
images on the Internet. This new problem is closely related to the
task tackled by our algorithm in this paper—for our current algo-
rithm presented in this paper, we intend to find relevant images for
a given text query; while in the automatic image labeling task, the
goal is to look for text term(s) that can maximize their relevance
with a given image. We suspect many steps of our algorithm can
be readily used to address that new problem.
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Figure 5: Three personal photo album search experiments using the keywords “cloud,” “beach,” and “jokul” respectively. For each
experiment, we show its top 20 search result images, along with each image’s relevance to the query (beneath the image).


