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Abstract—Real-time cyber-physical systems and information
processing clusters require system designers to consider the
total latency involved in collecting and aggregating data. For
example, applications such as wild-fire monitoring require data
to be presented to users in a timely manner. However, most
models and algorithms for sensor networks have focused on
alternative metrics such as energy efficiency. In this paper,
we present a new model of sensor network aggregation that
focuses on total latency. Our model is flexible and enables users
to configure varying transmission and computation time on a
node-by-node basis, and thus enables the simulation of complex
computational phenomena. In addition, we present results from
three tasking algorithms that trade-off local communication for
overall latency performance. These algorithms are evaluated in
simulated networks of up to 200 nodes.

Keywords-sensor networks; scheduling; information process-
ing; aggregation

I. INTRODUCTION

Total time latency is an important metric for emerging
information processing and knowledge discovery systems.
For example, sensor networks play a key role in several
emerging applications, including environmental monitoring
[1], civil engineering [2], wild-fire monitoring [3], and
emergency dispatch [4]. Many of these applications require
complex analysis to occur in the network and for results
to be transmitted back to users in a timely fashion. Due to
the limited energy capacities of sensor nodes, much research
has gone into energy-efficient communication protocols and
system architectures [5]. Although still important, less at-
tention has been focused on time latency. Other types of
information processing systems, including MapReduce [6]
clusters, exhibit similar timeliness constraints.

We present a tree-based model of information processing
systems that enables us to evaluate total latency with respect
to different network topologies and tasking strategies. In this
paper, we design and evaluate three tasking algorithms that
trade-off communication needs with total latency. The rest
of this paper is organized as follows. The aggregation and
communication model is reviewed in Section II. Section
IIT discusses the tasking algorithms we use to generate
task schedules for the sensor network. Results using these
tasking algorithms are demonstrated in Section IV. Finally,

we compare our work to related works (Section V) and offer
a brief conclusion (Section VI).

II. AGGREGATION MODEL

We model information processing systems using a tree-
based aggregation scheme. For sensor networks and other
less capable systems, we also model the network basestation
(i.e., a capable workstation connected to the sensor network)
as the root of the tree. Tree-based routing structures are
popular within the sensor network community due to the
ease of implementation and ability to aggregate data at
subtree roots [7]. Likewise, aggregation trees are commonly
used in many data-parallel programming models [8].

In our model, each network node collects data (represent-
ing temperature, humidity, etc.) at some initial time. The
data flows toward the root as each node transmits the data
to its parent node. Along the way, the data will become
aggregated if the data is passed through a node that has
been assigned computation (e.g. fasked). Once the data has
reached the root, the remaining data is aggregated. In our
model, all the nodes are synchronized and time is measured
in discrete timesteps.

In order to model a variety of network settings, each node
in our simulation includes parameters to control relative
computation time (number of timesteps to compute over n
bytes of data) and transmission time (number of timesteps
to transmit n bytes of data to the parent node). These
parameters can be used to model a variety of information
processing scenarios including sensor nodes, MapReduce
clusters, and faulty nodes (where nodes have higher relative
transmission time).

Once the parameter values are set, each node can dynam-
ically be in one of three states: idle (waiting for data), com-
pute (computing over some data), and transmit (transmitting
data). Each node intially collects data (the amount of data is
set by the user) and enters the transmit state. Upon receiving
data, a node will enter the compute state assuming the node
is tasked. If the node is not tasked, then the node enters the
transmit state. It stays in these states for the time specified by
relative computation and transmission parameters. Finally, if
the node does not receive data, it enters the idle state.
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aggregate the data and transmit results.

An illustration of data being transmitted and processed is
shown in Figure 1. In this illustration, every node has set its
relative computation and transmission times to one timestep.
Normally those parameters would have higher values, but
we choose a single timestep to simplify the flow diagram.
Initially all nodes are in an idle state (not shown in the
figure). In the next timestep, the nodes enter the transmit
state. As time progresses, the data is transmitted towards the
root. Upon receiving data, tasked nodes enter the compute
state. After aggregating the data, the nodes transmit their
results.

III. TASKING STRATEGIES

The goal of the tasking algorithm is to determine which of
the eligible nodes in the network should be tasked. A node is
deemed to be eligible if it is an internal node (versus a leaf
node). If the node is tasked, it then performs aggregation
over the data received from its subtree. Although the goal is
relatively straightforward, we will demonstrate that different
tasking schedules can yield very different total latencies
(Section IV). We measure total latency as the time from
the initial data collection to processing the final values at
the tree root.

The challenge associated with tasking is that computation
can often be more time intensive than communication.
This will be the case when the communication is heavily
constrained (e.g. a harsh environment, or sparse network),
or if the computation is complex (e.g. complex reduce
operations [9]). Poor tasking strategies may inadvertently
cause bottlenecks in the network thus resulting in poor
latency performance.

We assume that tasking strategies take into account a
coverage value c. The coverage value represents the pro-
portion of nodes that should be tasked, and can range from
0 (none of the nodes should be tasked) to 1 (all of the
nodes should be tasked). The coverage value is important
for systems in which nodes must remain responsive to
the external environment (e.g., interactive systems, sensor

Ilustration of the aggregation model. Data is generated by sensor nodes and is transmitted towards the root of the routing tree. Tasked nodes

networks). Consequently, it is often desirable to minimize
the number of nodes executing the computation.

We have implemented and evaluated three different task-
ing algorithms: random, greedy, and genetic algorithm.
These tasking strategies vary in the amount of information
required from the network, and consequently yield different
latency performances.

A. Random Algorithm

In the random algorithm each node decides independently
whether it should be tasked with probability ¢ (assuming
the node is eligible). This results in a uniformly distributed
random tasking. Because each node does not rely on in-
formation from any other node, this is both the simplest
and least communication intensive tasking method. Although
simple, the random algorithm is very useful as a null
model by which to compare other, more complicated tasking
algorithms [10].

B. Genetic Algorithm

We have also implemented and evaluated a genetic al-
gorithm based tasking method. In this method, tasking
schedules are represented as a genome. The genome consists
of a vector v of length cxn (n is number of eligible nodes).
Elements of v are integers representing the individual tasked
nodes. Initially each genome consists of a random tasking
schedule. The genomes are then evaluated for fitness. In
order to determine the fitness of a genome, the tasking
schedule is instantiated and simulated on the network. The
longer the execution time, the lower the fitness.

After evaluating the fitness of each candidate, the
top genomes are pair-wise selected for crossover. During
crossover, approximately half of each parents’ tasking sched-
ules are selected to create a new schedule. Afterward the
new schedule undergoes mutation, in which a small number
of elements in the new schedule are randomly changed to
another eligible node. New schedules are created until the
desired population number is reached. This is continued
iteratively for a pre-set number of generations. For our
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Figure 2.

evaluations, we used a moderate population size (200), and
50 generations. Increasing the population size and number
of generations did not noticeably improve the schedule
latencies.

Unlike the random algorithm, the GA produces near opti-
mal tasking schedules. However, the GA requires knowledge
of the entire state of the sensor network, and must execute
on a centralized basestation. In addition, GA execution can
often take a very long time depending on the number of
generations evaluated and the desired population size.

C. Greedy Algorithm

We have also implemented a distributed, greedy algo-
rithm. Like the random algorithm, this algorithm executes
on individual nodes (as opposed to executing on the bases-
tation). Each node first recursively tasks all nodes in its local
subtree. Once the subtree has been recursively tasked, the
node then tasks itself and estimates the total latency within
its subtree (but not for the entire network). This is done
by simulating the subtree with the given tasking schedule.
Afterwards, the node de-tasks itself and re-estimates the total
latency with the new schedule. The node finally chooses the
strategy that yields the lower latency.

Unlike the random algorithm, the greedy algorithm re-
quires a node to communicate with its immediate children.
After tasking, each child must propagate its tasking schedule
to the parent so that the parent can effectively estimate the
subtree latency. In our current algorithm, a node cannot
influence whether any of its immediate children are tasked
or not, it can only control its own tasking. Although we do
not expect this algorithm to perform as well as the GA, this
algorithm is expected to yield better results than the random
algorithm.

0.6 0.8 1.

Number of schedules that perform worse than random as the greedy parameter (g) is increased for different coverage values (0.10 — 0.90)

IV. EVALUATION

The network model and each of the three tasking algo-
rithms were implemented and evaluated in simulation with
network sizes of up to 200 nodes. Each simulated network
was organized into a random routing tree in which each node
had a single parent and multiple children. We evaluated trees
with both a maximum of 2 or 3 children, and varied the
overall height of the routing trees. The relative computation
time was set to twice that of the transmission time. In
addition, the basestation was set to be five times faster than
the other sensor nodes. Although other relative computation
speeds can be used, we chose these values to reflect a
relatively conservative information processing system.

A. Greedy Algorithm Parameters

For the greedy algorithm we include an additional param-
eter, g, that determines the minimum subtree size necessary
to execute the greedy scheduler. When g is set to 0, all the
nodes are scheduled in a greedy fashion. When g is set to 1,
all the eligible nodes are tasked using the random scheduler.
This parameter can be used to fine-tune the amount of local
communication in the network. The larger the value, the less
the communication.

Although one may initially suspect that setting g to 0
always performs better (relative to other values of g), we
have not found this to be the case. In order to compare the
greedy scheduler to the random scheduler, we first assign
the same pseudo-random seed to both schedulers. That way
when the greedy scheduler executes using a large g value,
it will make the same 4AIrandomaAl decisions as the
random scheduler (at least on the subtrees). In this way,
we can evaluate how well the greedy decisions affect the
total latency.

Figure 2 illustrates the number of schedules that perform
worse than random as ¢ is increased. Each set of points
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Figure 4. Total latency of tasking algorithms at different coverage levels.

are for a different coverage value (0.10 4AS 0.90). Because
setting g to 1 is equivalent to the random scheduler, the
number of worse schedules is zero at ¢ = 1 (all the
schedules are equivalent). We observe that as g increases
the number of worse schedules quickly decreases in most
network configurations (g 0.40). Although the least greedy
scheduler (g = 0.90) generates the fewest worse schedules,
this is largely because this scheduler is mostly random with
very few greedy decisions. We can observe that the most
greedy scheduler (¢ = 0.10), usually performs better than
the other schedulers ( 2040 worse schedules). Somewhat
surprisingly, when g is set to 0.30, the scheduler performs
worse relative to g = 0.60.

In order to capture a more complete picture, we must also
observe the number of better solutions with varying g and
c values. Figure 3 illustrates the number of schedules that
performed better or equivalent to random as g increases for
different coverage values (0.30, 0.60). We observe that as g

increases, the number of better schedules slowly decreases,
while the number of equivalent schedules increases. This
indicates that having a low g value yields the most number
of better solutions. However, this also yields very few equiv-
alent schedules and many worse schedules. These results
indicate that there is a fundamental tradeoff in the greedy
scheduler. Lower g values (i.e., the greedier the tasking
strategy) will have a larger number of better and worse
schedules. Finally, we also observe that the greedy scheduler
simply does not generate that many better schedules ( < 20
/ 100).

B. Latency vs Coverage

To study the effects of varying the coverage parameter
(c), we varied ¢ and measured the total latency for several
network configurations. We measured the latency for the ran-
dom, GA, and greedy schedulers. For the greedy scheduler,
the greedy g parameter was varied from 0.40 4AS 0.90. Each
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data point was averaged over ten independent runs.

As Figure 4 illustrates, the GA consistently produced the
lowest latency schedules. This is expected since genetic
algorithms are designed to search for optimal solutions
in complex spaces. As the coverage increases, the latency
decreases for all schedules and eventually converges. Even
though computation takes twice as long as communication,
the communications savings are often sufficient to make it
worthwhile to aggregate. Somewhat surprisingly, with the
GA, latency usually flattens out after a small amount of
coverage (> 0.40). Indeed, in a few cases, the latency
actually increases when the coverage is set to a high value
(> 0.90). These observations indicate that when using the
GA scheduler, the user can choose an appropriately low
coverage value without sacrificing total latency.

Surprisingly, the greedy schedulers only perform
marginally better than the random scheduler. Most of the
greedy schedulers perform better with low coverage values
(< 0.40). In addition, the greedy schedulers tend to perform
better on well-balanced trees. This is partially expected
since well-balanced trees enable the greedy scheduler to
make more 4AIJdecisionsaAl at each depth (i.e. there are
more eligible nodes at any particular depth). As coverage
increases or as the trees become less balanced, the greedy
schedulers perform equally as the random scheduler. These
results indicate that a future distributed scheduler should
focus on vertical scheduling (across the tree depths) for
further advantages.

C. Latency vs Nodes

We also evaluated the effects of increasing the number
of nodes in the sensor network. This information can be
used to bound the approximate total latency as nodes are
introduced or removed from a system. Like the previous
experiments, the sensor networks were organized into trees

Total latency of tasking algorithms at different coverage levels.

with a maximum of two or three children, and also organized
into a well-balanced “short” tree, and unbalanced “tall” tree.
As illustrated in Figure 5, the total latency increases quite
differently depending on the sensor network configuration.
For networks with low coverage (¢ = 0.30), the GA
latency increases slowly from 100 timesteps to < 300
timesteps. However, for the random and greedy schedulers,
latency increases approximately linearly. For trees with high
coverage (¢ = 0.80), latency increases more slowly for
all network configurations. Indeed, for the GA scheduler,
adding more nodes (> 100) does not significantly increase
the total latency. These results imply that there is much room
for improvement in future distributed tasking algorithms.

V. RELATED WORKS

In-network aggregation in sensor networks is not a new
concept [11], [12]. Systems [13], [14], including TinyDB
[15], employ an SQL-like language to specify aggregation
operations (e.g. average, minimum, etc.). Unlike our work,
however, these systems primarily focus on energy efficiency
by actively manipulating the tree routing structure. In addi-
tion, the models employed by these systems do not explicitly
consider relative transmission and computation time, making
them unsuitable for latency analysis.

Real-time cyber-physical systems have gained much at-
tention recently due to their importance in many real-world
applications. Our scenario addresses a slightly different
problem than the one posed in typical real-time sensor
networks. We assume that the aggregation operations can be
controlled explicitly by the user using a coverage parameter.
Abdelzaher et al. [16] uses a control feedback mechanism
to minimize latency. However, their work does not explicitly
take into account relative computation time. The question
we address assumes that a routing mechanism is already
in place [17], and that the challenge lies in scheduling the



reduce operations given a routing tree, coverage value, and
relative computation time.

Previous works have also explored the role of aggregation
in the total latency [18], [19]. However, these works focus
on homogeneous environments (e.g. the relative speed of
the basestation is not considered) and do not explicitly
model computation and transmission time. Also, these works
actively select the routing path, while our algorithms assume
that the routing path is determined by the operating system
and is not directly controlled by the aggregation scheduler.

VI. CONCLUSION

We’ve presented an aggregation-focused model of sensor
networks that can be used to study the trade-offs between
computational coverage and total latency. Our model ex-
plicitly takes into account transmission and computation
times, and enables users to define different values for the
basestation. In addition, we’ve presented three different
tasking algorithms that operate over model to produce ag-
gregation schedules of varying quality. In the future, we
expect to continue exploring distributed tasking algorithms
for information processing systems. We’ve shown that the
gap between highly optimized schedules that use global in-
formation is quite large relative to our distributed algorithms.
This gives us encouragement that future distributed tasking
algorithms can still make large gains.
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