
 
 

 
 

A Novel Local Learning-Based Approach 
with Application to Breast Cancer Diagnosis 

 
 

Songhua Xu1, Ph.D. and Georgia Tourassi2, Ph.D. 
 

Biomedical Science and Engineering Center,  
Oak Ridge National Laboratory,  

Oak Ridge, Tennessee 37831, USA 

ABSTRACT 

In this paper, we introduce a new local learning based approach and apply it for the well-studied 
problem of breast cancer diagnosis using BIRADS-based mammographic features. To learn from our 
clinical dataset the latent relationship between these features and the breast biopsy result, our method 
first dynamically partitions the whole sample population into multiple sub-population groups 
through stochastically searching the sample population clustering space. Each encountered clustering 
scheme in our online searching process is then used to create a certain sample population partition 
plan. For every resultant sub-population group identified according to a partition plan, our method 
then trains a dedicated local learner to capture the underlying data relationship. In our study, we 
adopt the linear logistic regression model as our local learning method’s base learner. Such a choice 
is made both due to the well-understood linear nature of the problem, which is compellingly revealed 
by a rich body of prior studies, and the computational efficiency of linear logistic regression--the 
latter feature allows our local learning method to more effectively perform its search in the sample 
population clustering space. Using a database of 850 biopsy-proven cases, we compared the 
performance of our method with a large collection of publicly available state-of-the-art machine 
learning methods and successfully demonstrated its performance advantage with statistical 
significance.  
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1. INTRODUCTION & RELATED WORK 

The purpose of this study is to develop and evaluate a novel local learning-based approach for 
computer-assisted diagnosis of breast cancer. The idea of local learning dates back more than a 
decade ago [2,3,12], initially proposed by theoretical machine learning researchers. Due to the fast 
growth of computing power available, local learning has recently become truly affordable for 
dealing with real-world problems with large data sets. Outside the medical world, the idea of local 
learning has been successfully applied for modeling and mining industry data sets. For example, 
Kadlec and Gabrys introduced a local learning based approach for soft sensor data modeling [1]. 
Yoon and Cho [4] used hybrid global and local learners to emulate a mixed panel of experts for 
learning data labels. Hartono and Hashimoto adopted the local learning idea to produce an ensemble 
of neural networks [5] and also an ensemble of linear perceptrons [6] for learning data selection 
mechanisms. Dong et al. [7] introduced a local learning framework for recognition of lowercase 
handwritten characters. Qin and Forbes [8] utilized the local learning idea for executing dynamic 
regional harmony search. Nadeem and Fahringer [9] applied local learning for predicting the 
execution time of grid workflow applications. Sun and Wu [10] used local learning to compile a set 
of quality features and proved the effectiveness of their approach through experiments both on 
synthetic and real-world data sets. Sun et al. [11] used the local learning idea for feature selection in 
analyzing high-dimensional data. Li et al. [13] introduced a specialized local learning technique for 
predicting queue wait time. Despite the plethora of successes witnessed regarding the idea of local 
learning in physical sciences and engineering, the power of local learning has yet to be realized in 
the medical imaging world. In this paper, we introduce a new local learning based approach and 
apply it for the well-studied problem of characterizing the malignancy status of breast masses using 
BIRADS-based mammographic features [14].  

2. OUR METHOD 
 
Our new local learning based algorithm using the linear logistic regression method as its base learner 
can be described as follows.  
 

Step 1: Let  be the sample population that consists of  samples, i.e. . 
Each sample  carries 11 quantifiable features, represented as   . Given , our 
algorithm first randomly selects a clustering scheme  over . In our implementation, we use 
the k-Nearest Neighbour (kNN) clustering algorithm to generate the random clustering scheme. This 
is done by randomly selecting the number of clusters, , for the whole data set. Given , we then 
randomly select  samples as the initial seeds to perform our kNN clustering process. In addition, 
we also stochastically search for a pairwise sample distance metric  through randomly 
assigning a series of weight parameters  such that  

.  

 



 
 

 
 

Step 2: Under the clustering scheme , we partition the whole sample population into 

several sub-populations  such that  and .  For each such 

sub-population Gi, we then train a base learner , which in our current implementation is a linear 
logistic regression model. All trained base learners coupled with the clustering scheme  then 
form our local learning model for the entire input population , denoted as .  

 
Step 3: We iterate between steps 1 and 2 above. For each trained model instance  from 

step 2, we test its performance according to the validation part of the input data set for the model 
selection purpose. Note that the testing part of the input data set is not utilized throughout the whole 
training process. To measure the performance of a trained model instance, we apply Receiver 
Operating Characteristics (ROC) analysis and use the prediction ROC area under curve value (AUC) 
as the performance metric [15]. Our algorithm also keeps track of the performance of all model 
instances derived at any moment of our algorithm running time. During our stochastic clustering 
schema searching process, we also keep track of the collective performance of a certain clustering 
sampling configuration in terms of the number of sub-populations  and the weight parameters . 
We measure the collective performance of a clustering sampling configuration using the best 
prediction AUC performance of our local learning model  derived using one of its yielded 
clustering schemes . Note that a clustering configuration  implies a specific combination 
of cluster number k, weight vector , and initialization seed(s). The higher the collective 
performance value is, the more likely a similar clustering configuration will be sampled in the 
subsequent iterations. In measuring the similarity between two clustering configurations, we use the 
following metric: , where ||.|| denotes the 
Euclidean norm. Overall, our algorithm performs its stochastic searching process until the total 
allowed computing time is used up by our random walk process in identifying the most suitable 
population subdivision scheme and their corresponding individual base learners.  

 

3. EXPERIMENT RESULTS 
 
The proposed local learning-based approach was applied for predicting the malignancy status of 
breast masses based on 11 features: 5 mammographic (mass margin, mass shape, mass density, mass 
size, associated architectural distortion) reported by radiologists using the BI-RADS lexicon, 5 
clinical findings (patient age, family history of breast cancer, history of hormonal therapy, history of 
BRCA, menopausal status), as well as the radiologists’ BI-RADS assessment of malignancy. Our 
database consisted of 850 biopsy-proven breast masses (290 malignant and 560 benign). Based on 
their BI-RADS assessment, the radiologists’ AUC diagnostic performance was 0.8573±0.0144. 
 
We compared the performance of our method with a collection of publicly available state-of-the-art 
machine learning methods. Table 1 shows the detailed list of the 54 machine learning methods we 
tested with their corresponding AUCs estimated by the machine learning toolkit Weka (version 3.0). 
These methods include: 1) Bayesian Logistic Regression, 2) Naïve Bayes, 3) Naïve Bayes Simple, 4) 
Naïve Bayes Updateable, 5) Logistic, 6) Multilayer Perceptron, 7) RBF Network, 8) Simple Logistic 



 
 

 
 

Regression, 9) Nested Dichotomies, 10) Filtered Classifier, 11) Grading, 12) Decision Stump, 13) 
LMT, 14) Simple Cart, 15) Ada Boost, 16) Attribute Selected Classifier, 17) Bagging, 18) 
Classification Via Clustering, 19) Classification Via Regression, 20) CV Parameter Selection,  21) 
Dagging, 22) J48 Tree, 23) Logit Boost, 24) Multi Boost AB, 25) Multi Class Classifier, 26) FT 
Tree, 27) NB Tree, 28) REP Tree, 29) Bayes Net, 30) SVM (Poly Kernel), 31) SPegasos, 32) Voted 
Perceptron, 33) IB1, 34) Linear NN Search, 35) KStar, 36) LWL (Decision Stump), 37) Multi 
Scheme, 38) Hyper Pipes, 39) VFI, 40) J48 graft, 41) Random Forest, 42) Conjunctive Rule, 43) 
Decision Table, 44) DTNB, 45) JRip, 46) NNge, 47) One R, 48) PART, 49) Ridor, 50) Zero R, 
51)AD Tree, 52) BF Tree, 53) LAD Tree, and 54) Random Tree. Figure 1 illustrates the AUC 
performance of all 54 machine learning methods. The reported performance was based on 10-fold 
cross validation performed using Weka’s own implementation.  

 
Figure 1. AUC performance comparison of 54 machine learning methods for our breast cancer 
diagnosis problem.  
 
To the best of our knowledge, Weka’s implementation of cross-validation is based on randomly 
dividing the whole sample population in a way that is fixed for all methods and all runs. Therefore, 
performance measurement numbers obtained for different methods can be directly compared. The 
best prediction performance observed is 0.912 (as determined by Weka’s AUC implementation), 
which is attained by three different methods: Simple Logistic Regression, LMT, and Classification 
Via Regression—all highlighted in red in Figure 1. This finding is consistent with prior studies 
confirming the highly linear nature of the problem in that simple linear regression is capable of 
achieving top performance among all popular machine learning methods. Our study results further 
confirm that using sophisticated machine learning approaches such as multi-layer perceptron, 
Adaboost, and multi-class classifier do not provide any further improvement. We believe that the 
more sophisticated decision boundaries produced by these advanced learning methods cannot 
effectively improve the learning performance, but only subject the methods to higher overfitting risk. 
 
 
 
 



 
 

 
 

Table 1. AUC performance comparison of 54 machine learning methods for breast cancer 
diagnosis. 
  

Method AUC Method AUC Method AUC Method AUC 

1. Bayesian 
Logistic Regression 

0.508 15. Ada 
Boost 

0.904 29. Bayes 
Net 

0.892 42. Conjunc-
tive Rule 

0.852 

2. Naïve Bayes 0.885 16. Attribute 
Selected 
Classifier 

0.854 30. SVM  

(Poly 
Kernel) 

0.829 43. Decision 
Table 

0.900 

3. Naïve Bayes 
Simple 

0.883 17. Bagging 0.909 31. 
SPegasos 

0.837 44. DTNB 0.891 

4. Naïve Bayes 
Updateable 

0.885 18. 
Classifica-
tion Via 
Clustering 

0.545 32. Voted 
Perceptron 

0.511 45. JRip 0.848 

5. Logistic 0.911 19. 
Classifica-
tion Via 
Regression 

0.912 33. IB1 0.730 46. NNge 0.767 

6. Multilayer 
Perceptron 

0.885 20. CV 
Parameter 
Selection 

0.493 34. Linear 
NN Search 

0.751 47. One R 0.841 

7. RBF Network 0.874 21. Dagging 0.856 35. KStar 0.886 48. PART 0.842 

8. Simple Logistic 
Regression 

0.912 22. J48 Tree 0.871 36. LWL 
(Decision 
Stump) 

0.881 49. Ridor 0.803 

9. Nested 
Dichotomies 

0.824 23. Logit 
Boost 

0.906 37. Multi 
Scheme 

0.493 50. Zero R 0.493 

10. Filtered 
Classifier 

0.873 24. Multi 
Boost AB 

0.897 38. Hyper 
Pipes 

0.562 51. AD Tree 0.906 

11. Grading 0.500 25. Multi 
Class 
Classifier 

0.911 39. VFI 0.754 52. BF Tree 0.847 

12. Decision Stump 0.833 26. FT Tree 0.855 40. J48 graft 0.825 53. LAD 
Tree 

0.904 

13. LMT 0.912 27. NB Tree 0.878 41. Random 
Forest 

0.878 54. Random 
Tree 

0.775 

14. Simple Cart 0.84 28. REP 
Tree 

0.862 Best prediction performance: 0.912,                    
attained by Classification Via Regression, LMT, 

and Simple Logistic Regression. 



 
 

 
 

Since linear logistic regression was one of the best performing and simplest Weka machine learning 
methods, we compared our approach to it using the same cross-validation plan. Table 2 shows the 
corresponding performance for the proposed approach in terms of its AUC and the partial AUC 
value (0.90AUC) for the case when our local learning method partitions the whole sample population 
into different numbers of sub-populations for k=1, …, 20.  
 
Table 2. AUC performance analysis and comparison of our local learning method with respect 
to its base learner.  
 

 Run 1 Run 2 

k AUC 0.90AUC  AUC 0.90AUC  

1 0.8795 ± 0.0126 0.0414±0.0032 0.8801±0.0122 0.0414±0.0033 

2 0.8895±0.0118  0.0452±0.0034 0.8911±0.0116 0.0447±0.0034 

3 0.8932±0.0119 0.0440±0.0032 0.8860±0.0120 0.0442±0.0034 

4 0.8905±0.0119 0.0446±0.0033 0.8843±0.0122 0.0422±0.0032 

5 0.8855±0.0122 0.0428±0.0032 0.8797±0.0124 0.0422±0.0033 

6 0.8851±0.0121 0.0432±0.0033 0.8862±0.0122 0.0426±0.0032 

7 0.8853±0.0122 0.0425±0.0032 0.8837±0.0121 0.0446±0.0034 

8 0.8870±0.0121 0.0428±0.0032 0.8830±0.0120 0.0452±0.0035 

9 0.8829±0.0121  0.0440±0.0034 0.8825±0.0122 0.0435±0.0033 

10 0.8871±0.0119 0.0457±0.0035 0.8741±0.0125 0.0424±0.0034 

11 0.8685±0.0129 0.0400±0.0033 0.8759±0.0120 0.0489±0.0039 

12 0.8675±0.0131 0.0388±0.0032 0.8656±0.0135 0.0353±0.0029 

13 0.8547±0.0137 0.0359±0.0031 0.8714±0.0126 0.0430±0.0035 

14 0.8535±0.0136 0.0380±0.0033 0.8675±0.0132 0.0371±0.0030 

15  0.8489±0.0139 0.0354±0.0031 0.8655±0.0132 0.0384±0.0032 

16 0.8611±0.0130 0.0420±0.0036 0.8655±0.0132 0.0381±0.0032 

17 0.8519±0.0138 0.03609±0.00315 0.8678±0.0128 0.0419±0.0034 

18 0.8593±0.0134 0.03797±0.00323 0.8672±0.0128 0.0416±0.0034 

19 0.8427±0.0143 0.03331±0.00301 0.8610±0.0133 0.0380±0.0032 

20 0.8185±0.0151 0.03024±0.00298 0.8556±0.0135 0.0381±0.0033 

 Overall  0.8932±0.0119  0.8911±0.0116  

P-value  0.0211  0.0104  

 



 
 

 
 

Note that k=1 corresponds to a degenerate case where no local learning scheme is used and the entire 
sample population is learned as a whole. This setting provides the baseline method where logistic 
regression alone is used. The table includes detailed results for two separate runs of the same 
experiment (Runs 1 and 2). These runs represent two different ten-fold sample division plans but the 
conditions for both runs are kept otherwise the same. The second to last row of the table, titled 
“overall,” reports the overall best performance of our local learning method across all k’s in terms of 
AUC. The last row of the table shows the two-tailed p-value for the statistical comparison between 
the overall performance of our local learning method to that of the baseline linear logistic regression 
method. As the table shows, our approach performs statistically significantly better than the baseline 
linear logistic regression method. Furthermore, a small number of sub-populations (k=3 for Run 1 
and k=2 for Run 2) appears to be the optimal for the specific problem. 
 
Figure 2 illustrates these performance testing results. We used the Matlab function call of linear 
logistic regression to realize our base learner and the ROCKIT software to compute both AUC and 
0.90AUC values. The figure shows the results of two different runs, demonstrating the stability of our 
study conclusion independent from any random ten-fold sample division plan. As the figure 
indicates, our local learning method outperforms the baseline linear logistic regression method with 
statistical significance at the 95% confidence level for both runs. Note that the AUC differences of 
the simple logistic regression method between Figures 1 and 2 could be easily attributed to 
differences in the implementation of the 10-fold cross validation scheme and the software used to 
estimate the AUC area. The results shown in Figure 1 are based on the Weka software, which does 
not output its ten fold sample data split for us to employ in our own experiments. The results shown 
in Figure 2 are based on in-house software and the ROCKIT software for estimating AUCs and 
partial pAUCs. Due to these differences, the numbers reported in Figures 1 and 2 cannot be directly 
compared. However, the qualitative conclusions remain the same: simple linear logistic regression 
achieves the best performance among a wide range of sophisticated machine learning methods 
implemented in Weka, yet our local learning approach achieves a noticeable and statistically 
significant performance improvement 
 

4. CONCLUSION 
 
We introduced a novel local learning-based classifier and compared it with an extensive list of other 
classifiers for the problem of breast cancer diagnosis. Our experiments showed that our classification 
algorithm had superior prediction performance, outperforming a wide range of other well established 
machine learning techniques for the problem of breast cancer diagnosis. Despite the well-known 
linear nature of the problem, our local learning approach achieved a performance improvement, 
which was quantitatively validated through a set of two comparison experiments. Besides the 
superior machine learning method readily offered by our novel local learning approach, our 
experimental results also suggest that it is worth exploring local learning techniques even when 
tackling problems of highly linear structure. This conclusion complements the existing 
understanding in the machine learning community that local learning may capture complicated, non-
linear relationships exhibited in real-world datasets.  
 
 



 
 

 
 

 
(a) AUC for Run 1                                            (b) AUC for Run 2 

 
(c) pAUC for Run 1                            (d) pAUC for Run 2 

 
Runs Run 1 Run 2 

AUCbase 0.8795±0.0126 0.8801±0.0122 
AUCour 0.8932±0.0119 0.8911±0.0116 

2-tailed P-value 0.0211 0.0104 
 
(e) Comparison between the AUC performance of our global base learner (AUCbase), overall AUC 
performance of our local learning method (AUCour), and the two-tailed P-value of our method’s performance 
against that of the global base learner (Pour-base). 
 
Figure 2. AUC performance analysis and comparison of our local learning method with 
respect to its base learner.  
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