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Abstract— Devices such as mobile phones, tablets, and sensors
are often equipped with GPS that accurately report a person’s
location. Combined with wireless communication, these devices
enable a wide range of new social tools and applications. These
same qualities, however, leave location-aware applications vul-
nerable to privacy violations. This paper introduces the Negative
Quad Tree, a privacy protection method for location aware
applications. The method is broadly applicable to applications
that use spatial density information, such as social applications
that measure the popularity of social venues. The method employs
a simple anonymization algorithm running on mobile devices, and
a more complex reconstruction algorithm on a central server.
This strategy is well suited to low-powered mobile devices. The
paper analyzes the accuracy of the reconstruction method in a
variety of simulated and real-world settings and demonstrates
that the method is accurate enough to be used in many real-
world scenarios.

I. INTRODUCTION

With the proliferation of social networking applications,
mobile devices, and urban sensor networks [1], location shar-
ing has become a common online activity. Many mobile
devices contain location sensors that can report a person’s
position with a high degree of accuracy. Social networking
sites take advantage of this location information for a variety
of applications. Examples include visualizing social hotspots
1, identifying traffic congestion [2], and informing friends of
one’s current location 2. Although these applications provide
many benefits, users still express strong privacy concerns [3].

Typically in these applications, mobile devices record the
user’s location, and transmit it to a central server. The server
then aggregates locations in an application-specific manner.
Many privacy and security issues can arise during the appli-
cation lifecycle. Even when individual users are willing to
reveal sensitive information, archiving such data may lead to
inadvertent privacy breaches. One method to protect the user
from privacy breaeches is to remove all unique identifiers from
the location information. This can be accomplished by the
user’s mobile device before transmission.

1citysense.com
2www.google.com/latitude

Instead of anonymizing the user, an alternative approach
obsfucates the location data. By obsfucating location data
intelligently, individual users’ privacy can be preserved with-
out sacrificing the ability to authenticate users. A popular
instantiation of this approach is spatial cloaking in which
only a coarse view of the user’s location is reported [6].
This technique can be combined with k-anonymity [7], where
a sufficient large location area is reported to ensure that at
least k individuals are co-located, making it difficult to know
which one is the actual user. These techniques, however, still
reveal the approximate location of a particular user. Also, the
locations can often be correlated with other users if a history
is stored. Decreasing spatial resolution can increase the k-
anonymity, but may simultaneously harm the usability of the
application. Yet another technique encrypts the location so data
cannot be reconstructed if intercepted. Although this protects
from unwanted snooping, the data must still be decrypted
at the application server, which presents opportunities for
malicious insiders or external parties to gain this information.

In our approach users report locations where they are
not found. This process, called negation, enables users to
participate anonymously in many location-based applications.
Specifically, we target applications in which users are inter-
ested in aggregated location information. Using our technique,
the negated locations can be reconstructed to compute the
overall spatial distribution via a modified Negative Survey
[8]. However, location-based services that report back specific
locations of nearby services would need to use an alternative
approach, such as one based on private information retrieval
[9].

We introduce the Negative Quad Tree (NQT), an extension
of the Negative Survey for reconstructing geographic density.
Unlike location-cloaking, adversaries cannot even approximate
where a particular user is located. In addition, adversaries
cannot differentiate between multiple possible locations for
a particular user. In the remainder of the paper we give details
of the algorithm (Section II), and evaluate the algorithm,
theoretically and via simulation, under various conditions
(Section III). We show that the algorithm can anonymize data
adequately while accurately reconstructing important informa-
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Fig. 1. The two-dimensional area is recursively divided into four quadrants. A location is encoded as a series of values identifying the quadrant starting
with the upper-most set of quadrants. Given a location (green), the algorithm selects at random a negated vector (blue). Once a negative vector is selected
(highlighted), the algorithm is able to exclude many locations (red).

tion. We also discuss potential vulnerabilities of our approach
and demonstrate how it can defeat common correlation-based
attacks (Section IV). Finally, we discuss related work (Section
V) and offer a brief conclusion (Section VI).

II. COMPUTATIONAL MODEL

The Negative Quad Tree algorithm consists of two phases.
First, all locations are anonymized locally at the source via a
mobile device. The anonymization process is designed to be
simple and efficient. Next the anonymized data are collected at
an application server. The server then reconstructs the spatial
distribution of all the users. Finally, the reconstructed spatial
distribution is transmitted back to users.

A. Anonymizing Location Data

The first step in the NQT algorithm is anonymization of the
location data. Most GPS devices represent location as a pair
of latitude and longitude values. This is converted to a quad
tree format [10]. In a quad tree, the area of interest is divided
into four rectangular quadrants. Each of these quadrants are
numbered (0 - 3). Within each quadrant, the area is divided
into sub-quadrants. This division repeats recursively until
the desired resolution is reached. A location is encoded by
recording all the quadrant values. With 5 hierarchical divisions
(or levels), the quad tree will contain 1024 grid cells, sufficient
for describing many metropolitan-sized areas (with 1km2 grid
cells).

Algorithm 1 Negate(l)
Require: location l

for i = 0 to levels do
ni ← random({0, 1, 2, 3} − {li})

end for
return n

For each element in the quad tree vector, the algorithm
selects one of the other remaining quadrant values uniformly

at random (Algorithm 1). For example, if the first vector value
is 1, the algorithm chooses 0, 2, or 3. After completing this
process for each vector value, the user is left with a negative
vector.

Figure 1 illustrates this process for the location vector <
3, 1, 2 >. Once a negative vector is selected, the reconstruction
algorithm then eliminates all locations represented by the
negative vector. For example, if < 0, 3, 1 > is chosen as
the negative vector, the algorithm can eliminate all locations
in quadrant 0. In the remaining quadrants, the algorithm
can eliminate all locations in sub-quadrant 3. Within those
remaining, the algorithm can finally eliminate sub-quadrant
1. After eliminating all these locations, there are still many
remaining locations. The job of the reconstruction process is
to estimate the number of samples found in the remaining
locations.

B. Reconstructing Spatial Distributions

Algorithm 2 Estimate(l, r, e)

Require: location l, reported values r, current estimates e {l̂:
negative vectors of l,
c: contributions from other possible locations,
Prm→n: probability of m generating neg. vector n}
s← 0
for n ∈ {l̂} do
c← 0
for m ∈ {n̂} do

if m 6= l then
c← c+ (Prm→n)× (em)

end if
end for
s← s+ rn − c

end for
return s



Fig. 2. Examples of the negation and reconstruction process for grids with 4 and 5 hierarchical levels using 128, 000 samples. Red indicates denser areas,
while blue indicates sparse areas. The first column with actual data contains a few densely populated areas. The second column with the negated data obsfucates
the data. The third column displays the reconstructed data.

Once all the negative vectors are collected, the NQT algo-
rithm reconstructs the spatial distribution using a probabilistic
approach. In order to estimate the number of samples for a
location, the algorithm relies on an estimate for the other
remaining locations. Consequently, the reconstruction process
can be expressed as a linear system of equations. Each grid
cell is modeled as a variable in the system. For a given grid
cell, the coefficients of the equation can be calculated using
Algorithm 2. This algorithm can be broken down into two
steps. First, note that for a particular location l, there exists a
select set of negative cells (l̂) that may belong in l. By simply
summing each value from l̂, we can derive an upper estimate
for l. However, there are many additional locations besides l
that the negative cells may also belong to. In the second step,
we simply remove those contributions.

We solve this system using the Apache Commons Java
matrix library. The reconstruction process is relatively fast
even for 5 quad levels (< 17 sec.) using a typical workstation
(4 2.6 ghz Intel processors with 4 GB of RAM). Solving
problems of the form Ax = b is typically accomplished
via LU factorization, an O(n3) process. For applications
that require more than 5 quad levels, directly solving the
linear system could be prohibitive. In that case, alternative

approaches to solving the system may be necessary (e.g.
Gauss-Seidel). However, for applications that take place in
a typical metropolitan areas, 4 − 5 quad levels should be
sufficient.

III. EVALUATION

Levels Negated Accuracy Estimate Accuracy
2 -0.356 ± 0.302 0.995 ± 0.302
3 -0.171 ± 0.231 0.874 ± 0.231
4 -0.093 ± 0.207 0.705 ± 0.207
5 -0.069 ± 0.059 0.518 ± 0.059

TABLE I
AVERAGE CORRELATION VALUES AND STANDARD DEVIATIONS OF

NEGATED AND RECONSTRUCTED HISTOGRAMS AS THE NUMBER OF

LEVELS IS INCREASED FROM 2 TO 5 USING 128, 000 SAMPLES. VALUES

CLOSE TO −1.0 OR 1.0 INDICATE A STRONG CORRELATION.

We illustrate the results of negating and reconstructing the
spatial distribution in two settings (Figure 2). In the top figure,
we employ 4 hierarchical levels. Three large areas are more
densely populated than the rest of the area (blue indicates
low density, red indicates high density). In the bottom-most



figure, we employ 5 hierarchical levels, and densely populate
four areas. Both settings use 128, 000 samples. The middle
figures visualize the distribution of negated vectors, showing
that they do not reveal much information about the actual
distribution. Table I reports the Pearson correlation. Because
negative vectors exclude large portions of the two-dimensional
area, the Pearson correlation is better than 0. Overall, the
reconstructed distributions identify salient features of the orig-
inal distribution.
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Fig. 3. Variance of the reconstruction as sample size and number of quad
tree levels are increased.

To evaluate the efficacy of the reconstruction process, we
model the coefficient of variation. We model the negation pro-
cess as a process that uniformly distributes a value across all
the remaining cells (excluding the original). This assumption
allows us to model the reconstruction as a binomial process.
The variance is then modeled using the standard coeffient of
variation equation for the binomial distribution (sampling size
n and l hierarchical levels):

v =

√
(3l ∗ n

4l
)( 1

3l
)(1− 1

3l
)

(3l ∗ n
4l
)( 1

3l
)

(1)

Results are illustrated in Figure 3. As the sampling popula-
tion increases, the variance quickly decreases and then levels
off. Although variance is not a direct measure of reconstruction
error, as variance decreases, the overall error is expected to
decrease. As illustrated, however, with 5 levels, the variance
does not reach 0 even with a high sampling population.
As the number of levels is increased, the variance increases
proportionally. With a sample size of 1000, the variance
approaches 1 (at 5 levels), indicating that the reconstruction
process will do poorly at those extremes.

We confirmed these modeling results using a set of sim-
ulated and actual population data. We simulated population
data using three spatial distributions. First we simulated a
uniform distribution with minor random variations in which
users were spread uniformly throughout an area. We also
simulated a patchy distribution, in which large groups of users
were located in small patches. Finally, we simulated a dense
distribution, in which most of the users reside in a few grid
cells. We ran all experiments against these three distributions.

For each experimental setup, we ran the experiment 10 times
and averaged the accuracy values.

To measure accuracy, we compared the reconstructed his-
togram to the original histogram using the Pearson correlation
coefficient (i.e. R value). The coefficient is calculated as
follows:

r =

∑
XY −

∑
X
∑

Y

N√
(
∑

X2 − (
∑

X)2

N )(
∑

Y 2 − (
∑

Y )2

N )

(2)

where X refers to the original data and Y the reconstructed
data. Given two similar histograms, the function will output
a value close to −1 or +1 (indicating a strong negative or
positive correlation between X and Y ). Dissimilar histograms
will output a value close to 0 (indicating no correlation).

In the first experiment, we evaluated the effects of increasing
the spatial resolution as the number of samples varied (1000,
16000, 64000, and 128000). The accuracy steadily decreased
with the number of levels (Figure 4) from a high of 1.0 to
values between 0.4 and 0.6. This was true across all sample
sizes and distributions. The uniform distribution, however, was
more volatile and the reconstruction was easier with large
sample sizes. We found that the patchy distribution performed
better than the dense distribution. We should note, however,
that even with 5 levels, the accuracy was still relatively high
(> 0.4), indicating that our reconstruction method can work
in high resolution scenarios.

We also evaluated the effects of increasing the number of
samples on the accuracy as we varied the number of hierarchi-
cal levels (2, 3, 4, and 5). We observed that accuracy quickly
increases and then steadily converges for most configurations
(Figure 5). We also observed differences in the distributions
more readily; distributions containing fewer dense areas per-
formed better. However, the uniform distribution usually out-
performed the other distributions after a sufficient number of
samples (> 60000). Finally, we observed that because accu-
racy only increased slowly after a large number of samples (if
at all); small fluctuations in sample size did not greatly affect
the results. This can be both good (if there are fewer samples)
or bad (since we cannot drastically increase the accuracy with
more samples). However, for many social applications tens of
thousands of participants is a realistic and sufficient figure.

In addition to simulation data, we evaluated the reconstruc-
tion technique on real world data. We downloaded geo-tagged
images over a 1 year period from the photo-sharing site Flickr
for the city of Barcelona, Spain. We obtained approximately
40, 000 points centered around the area near Port de Barcelona
representing approximately a 25km2 area. We retroactively
anonymized the data using 5 hierarchical levels. As Figure 6
illustrates, the reconstruction represents the popular area near
the center and a few smaller popular areas surrounding the
center. However, the center area is enlarged, and there are
many false positives near the edges of the gridded area. The
overall accuracy was approximately 0.59 indicating that the
algorithm has difficulty capturing fine details. Refining our
technique against additional real-world data is a subject of



Fig. 4. Accuracy of the reconstruction as the number of hierarchical levels are increased from 1 to 5 using 1000, 16, 000, 64, 000, and 128, 000 samples.
The accuracy decreases with more levels for nearly all sample sizes.

future work.

The results of these experiments suggest that the NQT
reconstruction is accurate for a wide array of sampling and
resolution scenarios. In general, lower spatial resolutions and
higher sampling rates increase overall accuracy as one would
expect. This is true for many different types of spatial distribu-
tions. The NQT reconstruction works especially well on large,
dense areas. Of course, applicability depends on the nature of
the application requirements. For example, applications that
are designed to pick out social hotspots will perform well,
because they are insensitive to small inaccuracies.

IV. CORRELATION-BASED ATTACKS

Many applications rely on collecting location data peri-
odically. Assuming that users move slowly (e.g. walking),
an adversary may be able to perform a correlation-based
attack to guess a user’s location. To execute this attack, the
adversary must first gain access to a history of the user’s
negative vectors. Given two negative vectors, one at time i and
another at time i+1, the adversary could generate all possible
locations for each negative vector and then perform a pair-wise
comparison between the two sets. Any pair of locations that
is geographically close to each other has a strong likelihood
of being the actual user location. The adversary can then



Fig. 5. The accuracy of the reconstruction as the number of samples are increased. The accuracy usually increases quickly with more samples, and eventually
levels off.

further decrease the number of possible pairs by continuing
this process.

To address this attack, the Negative Quad Tree can be
slightly modified to minimize differences between subsequent
negative vectors. First, a very short history of previous negative
vectors is stored locally on the user’s device. If a user moves
to a nearby grid cell, the algorithm does not generate a com-
pletely new negative vector. Instead, the algorithm attempts to

re-use as many elements from one of the previous negative
vectors. Assuming that the user has not moved very far, most
(if not all) of the negive vector elements can be re-used.
Implementing this optimization greatly reduces the potential
for a correlation-based attack (Figure 7). In the non-optimized
case, the number of potential locations decreases quickly for
scenarios in which the user is moving along both a straight
line and a random walk. However, for the optimized algorithm,



Fig. 6. Photo data obtained from Flickr of Barcelona, Spain over a one year period with 40, 000 samples. The right-most figure is the reconstruction of the
original data using the NQT method.

Fig. 7. The number of locations where the user may be located decreases quickly as the history size is increased. The difference-minimizing optimization
maintains a high number of possible locations and successfully defends against this attack.

the number of potential locations stays very high regardless of
the history size. This makes it substantially more difficult to
guess the user’s location.

A. Negative Survey

The NQT algorithm extends earlier work on the negative
survey. In the original work, users report a single value by
choosing randomly from a set of discrete categories excluding
their own. In principle, this method could be applied to spatial
density estimation by treating each location as a discrete
category. However, the original negative survey has difficulty
handling large numbers of categories, making the technique
infeasible for spatial applications (the number of locations
grows as 3levels). More recently there has been work to
improve the reconstruction accuracy of the negative survey
by assuming Gaussian priors [12]. This improved accuracy
enables the authors to consider spatial reconstruction. The

NQT, in contrast, does not make any a-priori assumptions
regarding the spatial distribution.

V. RELATED WORK

Recent work on participatory, urban sensing re-enforces
the need for privacy protection [13]–[15]. In these schemes,
centralized servers sanitize private data in application spe-
cific ways. The NQT algorithm, in contrast, anonymizes
the location data at the point of collection, minimizing the
risk of confidentiality loss. When the actual location data
is transferred, cryptographic techniques are often used to
protect data transmit. Recent work shows that it is possible
to use encryption techniques on low power devices [16], [17].
Cryptographic techniques emphasize data security, but because
the data must be decrypted to be used they don’t provide full
data privacy.

AnonySense [18] is a generic privacy framework designed



for use with personal devices within urban areas. Users em-
ploy a tasking language to specify the type of data to be
collected from these devices. The system then anonymizes
user information using a MIX network [4]. Unlike our work,
AnonySense is concerned with anonymizing the source of the
data, rather than the data itself. Due to its use of a MIX
network, the system requires a more complex anonymization
and authentication scheme in which the user must implicitly
trust certain system services (e.g. the mixing components).
Our technique is relatively simple and requires fewer trusted
components.

Our technique has the same goal as data perturbation
methods [19]–[21], where pseudo-random noise is added to
a set of data to obfuscate it. However, these techniques are
often designed to operate in a continuous domain, while
many location-based applications draw data from a discrete
domain. Our work also shares many goals with privacy-
preserving data aggregation techniques [22]–[24], in which
sensor nodes transmit anonymized data. The anonymized data
are aggregated in such a way that aggregate functions can be
easily computed. Our work generalizes these techniques since
histograms can be used to compute various aggregate values.

Randomized response techniques (RRTs) [19] are a survey
method designed to estimate the proportion of a population
that belongs to a particular group while protecting the privacy
of individuals participating in the survey. It does this by
offering surveyors multiple questions (only one of which is
sensitive) in lieu of a single question. Individuals randomly
select one of the questions to answer. Individuals give a yes
or no answer to one of these questions, but do not reveal which
question was answered. In this way, the results of the survey
combined with the characteristics of the randomizing device
provides enough information to reconstruct the proportion of
population members in each group.

Another important class of applications that require privacy
guarantees are online streaming applications. The primary
privacy goal in such applications is to ensure that the internal
state can be updated in a streaming manner without storing
sensitive data. Work by Dwork et al [25] addresses hese issues
using a variety of methods including randomized response.
The primary difference between these applications and the
ones we address is the assumption that all the data used for
reconstruction are readily available.

Our technique is inspired by negative databases [26], [27].
A negative database stores a compressed form of the data com-
plement instead of the actual data. The subsequent database
can be queried for element membership in polynomial time.
However, reconstructing the original database is difficult and
formally NP-Hard. Other operations over the negative database
are possible and range in computational complexity [28].

VI. CONCLUSION AND FUTURE WORK

The ability to collect location data has created many in-
teresting and useful applications. These applications range
from providing social services to providing key information on
traffic conditions. Although useful, location-aware applications

also have the potential to be abused. Software that helps users
find nearby friends can be compromised and reveal private
information. Similarly, applications may reveal information
about users that unwittingly disclose private information. To
address these issues, we developed and evaluated the Negative
Quad Tree, a privacy-preserving method that addresses the
construction of spatial densities using anonymous location
data. We evaluated the algorithm under a variety of scenarios
and demonstrated that it can be used in many real-world
settings.

Although the Negative Quad Tree addresses a wide array
of applications, the reconstruction is not perfect and may not
be suitable for all applications. We are focusing our future
work on improving the accuracy of the reconstruction process
for more stringent applications (including those that require
higher spatial resolutions). One approach we are exploring is
combining location cloaking with the NQT. Assuming that
users are comfortable broadly describing their location (i.e.
“south Knoxville”), we can employ the NQT in a smaller area.
In addition, we are also exploring the use of multi-dimensional
negative surveys in which multiple values must be hidden
(including location). We are confident that these extensions
will enable the use of the negative surveying techniques in a
variety of future applications.

As more devices become location-aware, the need for
privacy protection can only increase. Privacy protection will
come in multiple forms including legal constructs, crypto-
graphic frameworks, and application specific algorithms. Our
methods fall into application specific algorithms, because we
address location privacy within the context of certain applica-
tion scenarios. As location-sensitive technology matures, we
expect that privacy requirements will be addressed through
a combination of these approaches. By incorporating the
Negative Quad Tree algorithm into users’ devices, users will
have an additional tool by which to control their privacy.
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