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Abstract—Efficient resource management in data centers and
clouds running large distributed data processing frameworks
like MapReduce is crucial for enhancing the performance of
hosted applications and boosting resource utilization. However,
existing resource scheduling schemes in Hadoop MapReduce
allocate resources at the granularity of fixed-size, static portions
of nodes, called slots. In this work, we show that MapReduce jobs
have widely varying demands for multiple resources, making the
static and fixed-size slot-level resource allocation a poor choice
both from the performance and resource utilization standpoints.
Furthermore, lack of co-ordination in the management of mul-
tiple resources across nodes prevents dynamic slot reconfigura-
tion, and leads to resource contention. Motivated by this, we
propose MROrchestrator, a MapReduce resource Orchestrator
framework, which can dynamically identify resource bottlenecks,
and resolve them through fine-grained, co-ordinated, and on-
demand resource allocations. We have implemented MROrches-
trator on two 24-node native and virtualized Hadoop clusters.
Experimental results with a suite of representative MapReduce
benchmarks demonstrate up to 38% reduction in job completion
times, and up to 25% increase in resource utilization. We further
show how popular resource managers like NGM and Mesos when
augmented with MROrchestrator can hike up their performance.

I. INTRODUCTION

MapReduce [12] has emerged as an important cloud activity

for large-scale distributed data processing. Several academic

and commercial organizations like Facebook, Last.fm [1] use

Hadoop MapReduce [9], an open source implementation of

Google’s MapReduce. In utility clouds like Amazon EC2 [6],

Hadoop MapReduce is gaining prominence with customized

services such as Elastic MapReduce [7] for providing the

desired backbone for efficient Internet-scale data analytics.

MapReduce framework consists of two main components –

a MapReduce engine and a Hadoop Distributed File System

(HDFS). A master node runs the software daemons, Job-

Tracker (MapReduce master) and Namenode (HDFS master),

and multiple slave nodes run TaskTracker (MapReduce slave)

and Datanode (HDFS slave). The input data is divided into
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multiple splits, which are processed in parallel by map tasks.

The output of each map task is stored on the corresponding

TaskTracker’s local disk. This is followed by shuffle, sort and

reduce steps (refer [24] for illustrative figure and description).

Currently, resource allocation in Hadoop MapReduce is

done at the level of fixed-size resource splits of the nodes,

called slots. A slot is a basic unit of resource allocation,

representing a fixed proportion of multiple shared resources

on a physical machine. Only one map/reduce task can run

per slot at a time. The primary advantage of slots is the ease

of implementation of the MapReduce programming paradigm.

A slot offers a simple but coarse abstraction of the available

static resources on a machine.

The slot-based resource allocation in Hadoop has three main

disadvantages. The first downside is related to the fixed-size

and static definition of a slot. Hadoop is configured with a

fixed number of slots per machine, which are statically 1

estimated in an ad-hoc manner irrespective of a machine’s

dynamically varying resource capacities. A slot is too coarse

an allocation unit to represent the actual resource demand of a

task, leading to wastage of individual resources when multiple

of those are paired together in a slot. We observed in our

experiments that slot-level uniform and fixed-size allocation

can lead to scenarios, where some of the resources are under-

utilized, while others become bottlenecks. Likewise, analysis

on a 2000-node Hadoop cluster at Facebook [13] has shown

both the under and over cluster utilization due to significant

disparity between tasks resource demands and slot resources.

The second and third problems are attributed to the lack

of isolation and unco-ordinated allocation of resources across

the nodes of a Hadoop cluster, respectively. Although there is

a form of ‘slot-level’ sharing of resources across jobs that is

enforced by the Hadoop fair scheduler [16], there is no implicit

partitioning or isolation of resources across jobs. This can lead

to negative contestation of resources among jobs. For example,

a recent study on a Microsoft production MapReduce cluster

indicates high contention for dynamic resources like CPU and

memory [8]. Further, multiple nodes running different jobs are

agnostic of their resource demands and contentions. Lack of

global co-ordination in the management of multiple resources

1Based on the Hadoop code base, the number of slots per node is implemented as the

minimum amount of the resource in the tuple {C-1, (M-2)/2, D/50}; where C = number

of cores, M = memory in GB, D = disk space in GB, per node.



across the nodes can lead to situations, where local resource

management decisions contradict with each other. Thus, when

there are multiple concurrently executing MapReduce jobs,

lack of isolation and uncoordinated sharing of resources can

lead to poor performance because of resource contention.

These inefficiencies in Hadoop which were also recently

acknowledged by the Hadoop community [17] make resource

scheduling more challenging and different from traditional

cluster scheduling [2].

Towards this end, we make the following contributions:

• We present the design and implementation of a novel

resource management framework, MROrchestrator, that

provides fine-grained, dynamic and co-ordinated alloca-

tion of resources to MapReduce jobs. Based on the run-

time resource profiles of tasks, MROrchestrator builds on-

line resource estimation models for on-demand allocations.

MROrchestrator is a software layer that assumes or requires

no changes to the overlying Hadoop framework, making it

a simple, flexible and generic platform portable scheme.

• Detailed experimental analysis on two 24-node native and

virtualized Hadoop clusters demonstrate the benefits of

MROrchestrator in terms of reducing job finish times and

boosting resource utilization. Specifically, MROrchestrator

can achieve up to 38% reduction in job completion times

and up to 25% increase in resource utilization.

• MROrchestrator is complementary to the contemporary

resource scheduling managers like Mesos [18] and Next

Generation MapReduce (NGM) [17]. It can be augmented

with these frameworks to boost system performance. Results

from the integration of MROrchestrator with Mesos and

NGM demonstrate up to 17% and 23.1% reduction in the

job completion times, respectively. In terms of resource

utilization, there is a corresponding increase of 12% (CPU),

8.5% (memory); 19% (CPU), 13% (memory), respectively.

II. MOTIVATION

A. Need for dynamic allocation and isolation of resources

In a MapReduce cluster, jobs from multiple users have

widely varying resource usage characteristics. Slot-level re-

source allocation, which does not provide any implicit resource

partitioning and isolation, leads to high resource contentions.

Furthermore, Hadoop framework is agnostic to the dynamic

variation in the run-time resource profiles of tasks across

different map/reduce phases, and statically allocates resources

in a coarse grained slot unit. This leads to wastage of resources

since not all contained in a slot are proportionally utilized.

We provide some empirical evidences to the aforesaid

problems related to the slot-based resource allocation. We run

a Sort MapReduce job with 20 GB text input on a 24-node

Hadoop cluster. We observe variation in resource utilization

and finish times across the constituent map/reduce tasks of

this MapReduce job. Figures 1(a) and 1(b) show the CPU

and memory utilization variation for five concurrently running

reduce tasks of Sort job on a node across 10 randomly

selected epochs of their total run-time. From these figures,

we can observe that multiple tasks have different resource

utilization across these epochs. Some task (t2) gets more

CPU and memory entitlements and consequently finish faster

(see Figure 1(c)) when compared with the other concurrently

executing tasks. This observation can stem from a variety

of reasons – node heterogeneity, data skewness and network

traffic, which are prevalent in a MapReduce environment [8].

Here, the variation in disk utilization of these tasks is low since

most of the data resides in the memory of each node (20 GB

over 24 nodes). Further, due to an inherent barrier between the

map and reduce phase [12], such variation in resource usage

and finish times is disadvantageous since the completion time

of a MapReduce job is constrained by the slowest task.

B. Need for global resource co-ordination

Cluster nodes hosting MapReduce jobs when unaware of the

run-time resource usage profiles of constituent tasks can lead

to poor system performance. We illustrate this aspect through

an example. Consider 3 nodes N1, N2, N3 executing 3 jobs

A, B and C, with 2 map tasks each. That is, N1 is shared

by a map task of A and B, denoted as MA1 and MB1, N2 is

shared by a map task of B and C, denoted as MB2 and MC1,

and N3 is shared by a map task of A and C, denoted as MA2

and MC2. In this scenario, if we detect that MB1 is hogging

CPU allocation of MA1, and change the CPU allocations

between MB1 and MA1, we may not be able to improve

job A’s performance, because MC2 may be contending with

MA2 for CPU. Also, MC1 may be contending with MB2 for

CPU. Therefore, reducing MB1’s CPU allocation in N1 (based

on local information) will only hurt B’s performance without

improving A’s performance. The above scenario was observed

in a simple experiment, where we ran Sort (A), Wcount (B)

and DistGrep (C) jobs on a 24-node Hadoop cluster (details in

Section III-C1). Figure 1(d) depicts the corresponding results.

Such inefficiencies can be avoided with proper global co-

ordination among all the nodes.

III. DESIGN AND IMPLEMENTATION OF

MRORCHESTRATOR

In this section, we describe the design and implementation

of our proposed resource management framework, MROrches-

trator. Figure 2 shows the architecture of MROrchestrator. Its

main components include a Global Resource Manager (GRM),

running on the JobTracker, and a Local Resource Manager

(LRM), running on each TaskTracker. The GRM consists of

two sub-components: (i) a Contention Detector that dissects

the cause of resource contention and identifies both resource-

deficit and resource-hogging tasks and (ii) a Performance

Balancer that leverages the run-time resource estimations from

each LRM to suggest the resource adjustments to each LRM,

based on the global co-ordinated view of all tasks running on

TaskTrackers. The LRM also consists of two sub-components:

(i) a Resource Profiler that collects and profiles the run-time

resource usage/allocation of tasks at each TaskTracker and (ii)

an Estimator that constructs statistical estimation models of

a task’s run-time performance as a function of its resource

2
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Fig. 1: Illustration of the variation in the resource usage and finish time of the constituent tasks of a Sort MapReduce job [(a)-(c)], and
global co-ordination problem [(d)]. Experimental details described in Section III-C1. Y-axis in plot (c) is normalized w.r.t. maximum value.
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Fig. 2: Architecture of MROrchestrator.

allocations. The Estimator can have different performance

estimation models. As with other resource managers like

Mesos, we currently focus on CPU and memory as the two

major resources [8] for isolation and dynamic allocation. We

plan to address disk and network in the near future.

MROrchestrator performs two main functions: (i) Detecting

resource bottleneck and (ii) Performing dynamic resolution of

resource contention across tasks and nodes.

Resource Bottleneck Detection: The functionalities of this

phase can be summarized in two parts (denoted as steps 1

and 2 in Figure 2): (1) At regular intervals, the Resource

Profiler in each LRM monitors and collects run-time resource

utilization and allocation information of each task using the

Hadoop profiler [10]. This data is sent back to the Contention

Detector module of GRM at JobTracker, piggy-backed with

the heartbeat messages [9]. (2) on receiving these heartbeat

messages from all the LRMs, the GRM can identify which

task is experiencing bottleneck for which resource, on which

TaskTracker, based on the following rationale. When different

jobs, each with multiple map/reduce tasks, concurrently ex-

ecute on a shared cluster, we expect similar resource usage

profiles across tasks within each job. This assumption stems

from the fact that tasks operating in either the map or reduce

phase typically perform the same operations (map or reduce

function) on similar input size, thus requiring identical amount

of shared resources (CPU, memory, disk or network band-

width). Due to practical factors like node heterogeneity, data

skewness and cross-rack traffic, there is wide variation in the

run-time resource profiles of tasks due to slot-based resource

allocations in Hadoop. We exploit these characteristics here to

identify potential resource bottlenecks and the affected tasks.

For example, if a job is executing 6 map tasks across 6 nodes,

and we see that the memory utilization of 5 of the 6 tasks on

nodes 1–5 is close to 60%, but the memory utilization of only

one of the tasks on node 6 is less than 25%, the GRM, based

on its global view of all the nodes, should be able to deduce

that the particular task is potentially memory deficit.

This approach might not work properly in some cases.

For example, some outlier tasks may have very different

resource demands and usage behavior, or because of workload

imbalance, some tasks may get more share of input than

the others. Thus, the resource profiles of such tasks may be

quite deviant (although normal) and could be misinterpreted

in this approach. In such scenarios, we adopt an alternative

approach– we leverage the functionality of the JobTracker that

can identify the straggler tasks [12] based on their progress

score [27]. Since, resource contention is a leading cause for

stragglers [8], [13], the GRM based on these two features can

explicitly identify the potential resource contention induced

straggling tasks from others.

Resource Bottleneck Mitigation: The functionalities of this

phase can be explained using the remaining steps 3–4, as

shown in Figure 2. (3) After getting the information about both

the resource deficit and resource hogging tasks from the GRM,

the LRM at each TaskTracker invokes its Estimator module

to estimate the tasks completion times (see Section III-A

and Section III-B). The Estimator also maintains mappings

between task execution time and run-time resource allocations.

The Estimator builds predictive models for the finish time

of a task as a function of its resource usage/allocation. The

difference between the estimated and the current resource

allocation is the resource imbalance that has to be dynamically

allocated to the resource-deficit task. This information is

piggy-backed in the heartbeat messages from the respective

LRM to the GRM. After receiving the resource imbalances (if

any) from every LRM, the Performance Balancer module in

GRM executes this simple heuristic: the GRM at JobTracker

uses the global view of all running tasks on TaskTrackers to

determine if the requested adjustment in resource allocation is

in sync (see Section II-B) with other concurrent tasks (of the

same phase and job) on other TaskTrackers. (4) Based on this

3



global co-ordinated view, the GRM notifies each LRM of its

approval of suggested resource adjustment, following which

each LRM triggers the dynamic resource allocation.

A. Resource allocation and progress of tasks

In Hadoop MapReduce, a metric called progress score is

used to monitor the run-time progress of each task. For the

map phase, it represents the fraction of the input data read

by a map task. For the reduce phase, it denotes the fraction

of the intermediate data processed by a reduce task. All tasks

in a map or reduce phase perform similar operations, thus

the amount of resources consumed by a task is assumed to be

proportional to the amount of input data. In turn, the amount of

consumed resources will be proportional to the progress score

of each task. Therefore, as proposed in [27], in the absence of

any change in the allocated resource for a task, the predicted

task finish time, T̂ can be expressed as

T̂ =
1− ProgressScore

ProgressScore
T , (1)

where T represents the elapsed time of a task. However, on

varying the resource allocated to a task, the remaining finish

time, T̂ of a task may change. T̂ can thus be represented as

T̂ = α
1− ProgressScore

ProgressScore
T . (2)

Depending on α (which represents the resource scaling factor),

the estimated finish time can increase (α > 1, indicating

resource deficiency) or decrease (α < 1, indicating excess

resource). α = 1 signifies balanced task resource allocation. In

order to control α, we propose two choices for the Estimator.

B. Estimator

The Estimator module in LRM is responsible for build-

ing the predictive models for tasks run-time resource us-

age/allocations. It can plug-in a variety of resource allocation

schemes. We demonstrate two such schemes for MROrches-

trator. The first scheme is called REGRESSION, which uses

statistical regression models to get the estimated resource

allocation for the next run epoch. The second scheme is called

UNIFORM. It collects the past resource usage of all tasks in

a phase, computes the mean usage across all these tasks and

uses this value as the predicted resource allocation for the next

epoch. Details of each are described below:

1) REGRESSION scheme: This scheme determines the

amount of resources (CPU and memory) to be allocated to

each task at run-time, while considering the various practical

scenarios that may arise in typical MapReduce clusters like

node heterogeneity, workload imbalance, network congestion

and faulty nodes [8]. It consists of two stages. The first stage

inputs a time-series of progress scores of a given task and

outputs a time-series of estimated finish times corresponding

to multiple epochs in its life time. The finish time is esti-

mated using Equation 1. The second stage takes as input a

time-series of past resource usage/allocations across multiple

epochs of a task’s run-time (from its start time till the point

of estimation). It outputs a statistical regression model that

yields the estimated resource allocation for the next epoch as

a function of its cumulative run-time. Thus, at any epoch in

the life-time of a task, its predicted finish time is computed

from the first model, and then the second model estimates the

resource allocation required to meet the target finish time.

Separate estimation models are built for the CPU and

memory profiles of a task. For the CPU profile, based on our

experiments, we observed that the choice of a linear model

achieves a good fit. For the memory profile, however, a linear

model based on the training data from entire past resource

usage history did not turn out to be a good fit, possibly due to

the high dynamism in the memory usage of tasks. We use the

following variant to better capture the memory footprints of

the task. Instead of using the entire history of memory usage,

we only select training data over some recent time windows.

The intuition is that a task has different memory usage across

its map and reduce phases, and also within a phase. Thus,

training data corresponding to recent time windows is more

representative of a task’s memory profile. The memory usage

is then captured by a linear regression model over the recent

past time windows. The number of recent time windows

Algorithm 1 Dynamic allocation of resources to tasks (at GRM).

Input: Resource type R (CPU or memory), current allocation

(Rcur), task ID (tid), current epoch (ecur), resource scaling

factor (α).

1: Compute the estimated resource allocation (Rest) using

Algorithm 2.

2: if Rest > Rcur then

3: Dynamically increase (e.g., α > 1) the amount of

resource R to task tid by a factor (Rest - Rcur).

4: else if Rest < Rcur then

5: Dynamically decrease (e.g., α < 1) the amount of

resource R to task tid by a factor (Rcur - Rest).

6: else

7: Continue with the current allocation Rcur in epoch ecur.

8: end if

Algorithm 2 Computation of the estimated resource (at LRM).

Input: Time-series of past resource usage TSusage of concur-

rent running tasks, time-series of progress scores TSprogress
for a task tid, resource R, current resource allocation

(Rcur), Estimator scheme (UNIFORM or REGRESSION).

1: Split TSusage and TSprogress into equally-sized multiple

time-windows, (W = {w1, w2, ... , wt}).
2: for each wi in Wt do

3: if allocation-scheme = UNIFORM then

4: Compute the mean (Rmean) of the resource usage

across all tasks of the same phase and job in the

previous time-windows (w1 ... wi-1).

5: else if allocation-scheme = REGRESSION then

6: Get the expected finish time for task tid using the

progress-score based model (see Section III-B).

7: Compute the expected resource allocation for the next

epoch using the linear regression model.

8: end if

9: return Resource scaling factor, α.

10: end for

across which the training data is collected is determined by this

simple rule. We collect data over as many past time windows

till the memory prediction from the resulting estimation model
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is not worse than the average memory usage across all tasks

(e.g., UNIFORM scheme). This serves as a threshold for the

maximum number of past time windows to be used for the

training. From empirical analysis, we found 10% of the total

number of past windows serves as a good estimate for the

number of recent past windows to use for training. This thresh-

old is adaptive, and depends on the prediction accuracy of

the resulting memory usage model. Note that, the parameters

of this simple linear model dynamically vary across a task’s

run-time epochs, and thus not shown here. Algorithm 1 and

Algorithm 2 describe the resulting pseudo-codes. Specifically,

Algorithm 2 describes how the run-time estimated resources

for a task can be computed. Algorithm 1 uses Algorithm 2 to

perform the on-demand resource allocation. We observed that

for the benchmarks analyzed, a fraction of the corresponding

disk variation manifests into CPU and memory variations. We

plan to integrate the modeling of disk and network bandwidth

in MROrchestrator as part of our future work.

2) UNIFORM scheme: This scheme is based on the intu-

itive notion of fair allocation of resources to each map/reduce

task in order to reduce the run-time resource usage variation

and ensure approximately equal finish time across tasks.

In this scheme, each map/reduce task’s resource entitlement

at a given point in time is set equal to the mean of the

resource allocations across all tasks in the respective map and

reduce phase of the same job. However, in practice, due to

factors like machine heterogeneity, resource contention and

workload imbalance, this scheme might not work well. We

are demonstrating this scheme here primarily because of two

reasons. First, it is a very simple scheme to implement with

negligible performance overheads. Second, it highlights the

fact that even a naive but intuitive technique like UNIFORM,

when plugged with MROrchestrator, can achieve reasonable

performance benefits.

C. Implementation options for MROrchestrator

We describe two approaches for the implementation of

MROrchestrator based on the underlying infrastructure.

1) Implementation on a native Hadoop cluster: Here, we

implement MROrchestrator on a 24-node Linux cluster, run-

ning Hadoop v0.20.203.0. Each node in the cluster has a dual

64-bit, 2.4 GHz AMD Opteron processor, 4GB RAM, and

Ultra320 SCSI disk drives, connected with 1-Gigabit Ethernet.

Each node runs on bare hardware without any virtualization

layer (referred as native Hadoop). We use Linux control

groups (LXCs) [11] for fine-grained resource allocation in

Hadoop. LXCs are Linux kernel-based features for resource

isolation, used for similar purposes as in Mesos [18].

2) Implementation on a virtualized Hadoop cluster: Mo-

tivated by the growing trend of deploying MapReduce ap-

plications on virtualized cloud environments [6], [19], we

provide the second implementation of MROrchestrator on a

virtualized Hadoop cluster in order to demonstrate its platform

independence, portability and other potential benefits.

We allocate 1 virtual machine per node on a total of 24

machines (of the same native Hadoop cluster (Section III-C1))

to create an equivalent 24-node virtualized cluster, running

Hadoop v0.20.203.0 on top of Xen [5] hypervisor. Xen offers

advanced resource management techniques (like xm tool)

for dynamic resource management of the overlying virtual

machines. We configure Hadoop to run one task per virtual

machine. This establishes a one-to-one equivalence between a

task and a virtual machine, giving the flexibility to dynamically

control the resource allocation to a virtual machine (using xm

utility), implying the control of resources at the granularity

of individual task. xm can provide resource isolation, similar

to LXCs on native Linux. The core functionalities of GRM,

namely Contention Detector and Performance Balancer, are

implemented in Dom0. The LRM modules containing the

functionalities of Resource Profiler and Estimator are imple-

mented in DomUs. Similar to the native Hadoop case, the

TaskTrackers on DomUs collect, profile resource usage data

(using Hadoop profiler), and send it to the JobTracker at Dom0

using the Heartbeat messages.

IV. EVALUATION

We use a workload suite consisting of the following six

representative MapReduce jobs.

• Sort: sorts 20 GB of text data generated using Grid-

mix2 [14] provided random text writer.

• Wcount: computes the frequencies of words in the 20 GB

of Wikipedia text articles [4].

• PiEst: estimates the value of Pi using quasi-Monte Carlo

method that uses 10 million input data points.

• DistGrep: finds match of randomly chosen regular expres-

sions over 20 GB of Wikipedia text articles [4].

• Twitter: uses the 25 GB twitter data set [3], and ranks users

based on their followers and tweets.

• Kmeans: constructs clusters in 10 GB worth data points.

These jobs are chosen based on their popularity and being

representative of real MapReduce workloads, with diverse

resource mix. The first four jobs are standard benchmarks

available with Hadoop distribution [9], while the last two

are in-house MapReduce implementations. Sort, DistGrep

and K-means are primarily CPU and I/O intensive; Wcount

and Twitter are CPU and memory intensive; PiEst is CPU

intensive. Our primary metrics of interest are reduction in job

completion time and increase in resource utilization. The base

case corresponds to the slot-level sharing of resources with

Hadoop fair scheduler [16]. Two map/reduce slots per node

are configured for the baseline Hadoop.

A. Results for native Hadoop cluster

Figure 3(a) shows the percentage reduction in the execution

times of the six MapReduce jobs, when each one is run

in isolation (Single job), with the REGRESSION scheme.

MROrchestrator is executed in three control modes: (a)

MROrchestrator controls only CPU (CPU); (b) MROrchestra-

tor controls only memory (Memory); and (c) MROrchestrator

controls both CPU and memory (CPU+Memory) allocations.

We show results separately for the three control modes. We

summarize (in words, not shown in figures) each result with

5
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Fig. 3: Reduction in Job Completion Time (JCT) for a Single job and Multiple jobs cases in native Hadoop cluster.
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Fig. 4: Improvement in CPU and memory utilization in native and virtualized Hadoop clusters with Multiple jobs.
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Fig. 5: Reduction in Job Completion Time (JCT) for a Single job and Multiple jobs cases in virtualized Hadoop cluster.
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Fig. 6: (a) and (b) demonstrate the dynamics of MROrchestrator. (c) shows the performance benefits with Mesos, NGM and

MROrchestrator. (d) shows the comparison of MROrchestrator’s integration with Mesos and NGM, respectively.

two values – average (mean value across all the 6 jobs) and

maximum (highest value across all the 6 jobs). We can observe

that the magnitude of reduction in job completion time varies

at different scales for the three control modes. Across all

the 6 jobs, CPU+Memory mode tends to yield the maximum

reduction in job completion times, while the magnitude of

reduction for CPU and Memory modes varies depending on

the job resource usage characteristic. Specifically, we can

notice an average and a maximum reduction of 20.5% and

29%, respectively, in the completion times with CPU+Memory

mode of MROrchestrator. Further, we see that Sort job makes

extensive use of CPU (map phase), memory and I/O (reduce

phase), and benefits the most. The percentage reduction in

the job completion times for other five jobs varies depending

on their resource sensitiveness. It is to be noted that larger

jobs (w.r.t. both bigger input size and longer finish time)

like Twitter, Sort and Kmeans tend to benefit more with

MROrchestrator, when compared to other relatively shorter

jobs (PiEst, DistGrep, Wcount). The reason being that larger

jobs run in multiple map/reduce phases, and thus can benefit

more from the higher utilization achieved by MROrchestrator.

We next analyze the performance of MROrchestrator with

the UNIFORM scheme. Figure 3(b) shows the results. We can

observe an average and a maximum reduction of 9.6% and

11.4%, respectively, in the completion times. As discussed in

Section III-B2, UNIFORM is an intuitive but naive scheme
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to allocate resources. However, it achieves reasonable per-

formance improvements, suggesting the intuitive benefits and

generality of MROrchestrator.

Next, we analyze the completion times of individual jobs

in the presence of other concurrent jobs (Multiple jobs). For

this, we run all the six jobs together. Figure 3(c) shows the

percentage reduction in the completion times of the 6 jobs

with the REGRESSION scheme. We observe an average and

a maximum reduction of 26.5% and 38.2%, respectively, in

the completion times with CPU+Memory mode. With the

UNIFORM scheme (Figure 3(d)), we observe a 9.2% (average)

and 12.1% (maximum) reduction in job completions with

CPU+Memory mode.

Figures 4(a) and 4(b) show the percentage increase in the

CPU and memory utilization for Multiple jobs scenario. With

the REGRESSION scheme and CPU+Memory, we see an

increase of 15.2% (average) and 24.3% (maximum) for CPU;

14.5% (average) and 18.7% (maximum) for memory. We ob-

serve an average increase of 7% and 8.5% in CPU and memory

utilization, respectively for Single job case with CPU+Memory

mode. With the UNIFORM scheme, the percentage increase

seen in CPU and memory is within 10% both for Single job

and Multiple jobs cases (corresponding plots not shown due

to space constraint). Note that first, the benefits seen with

MROrchestrator are higher for environments with Multiple

jobs. This is due to the better isolation, dynamic allocation

and global co-ordination provided by MROrchestrator. Second,

the control of both CPU and memory (CPU+Memory) with

MROrchestrator yields the maximum benefits.

B. Results for virtualized Hadoop cluster

Figure 5(a) and Figure 5(b) show the percentage reduction

in job completions for Single job case with REGRESSION and

UNIFORM schemes, respectively. We can notice a reduction

of 15.6% (average) and 22.6% (maximum) with the REGRES-

SION scheme and CPU+Memory mode. With the UNIFORM

scheme, the corresponding reduction is 7.8% (average) and

9.6% (maximum). When all the jobs are run concurrently, the

percentage reduction is 21.5% (average) and 31.4% (maxi-

mum) for the REGRESSION scheme (Figure 5(c)). With the

UNIFORM scheme, the percentage decrease in finish time is

8.5% (average) and 10.8% (maximum), respectively.

The resource utilization improvements are plotted in Fig-

ure 4(c) and Figure 4(d). We observe an increase in the

utilization of 14.1% (average) and 21.1% (maximum) for

CPU (Figure 4(c)); increase of 13.1% (average) and 17.5%

(maximum) for memory (Figure 4(d)). These numbers cor-

respond to REGRESSION scheme with CPU+Memory. For

UNIFORM scheme, the percentage increase in CPU and

memory utilization is less than 10%.

To illustrate the dynamics of MROrchestrator, we plot

Figure 6(a) and Figure 6(b), which show the snapshots of

CPU and memory utilization of the Hadoop cluster with and

without MROrchestrator (base-line), and running the same

workload (all 6 MapReduce jobs running concurrently). We

can observe that MROrchestrator provides higher utilization

compared to the base-line, since it is able to provide better

resource allocation aligned with task resource demands.

From the above analysis, we can observe that the magnitude

of performance benefits obtained from the implementation of

MROrchestrator on native Hadoop is marginally more than

the corresponding implementation on virtualized Hadoop. This

might be related to the CPU, memory or I/O performance

overheads associated with the Xen virtualization [20]. Second,

configuring one task per virtual machine to achieve one-to-

one correspondence between them seems to inhibit the degree

of parallelization. However, the difference is not much, and

we believe with the growing popularity of MapReduce in

virtualized cloud environments, coupled with advancements in

virtualization, the difference would shrink in the near future.

C. MROrchestrator with Mesos and NGM

There are two contemporary resource scheduling managers

– Mesos [18] and Next Generation MapReduce (NGM) [17]

that provide better resource management in Hadoop. We

believe MROrchestrator framework is complementary to these

systems, and thus integrate it with Mesos and NGM to derive

added benefits.

We first separately compare the performance of Mesos,

NGM and MROrchestrator, normalized over the base case of

default Hadoop with fair scheduling. Figure 6(c) shows the

results. We can notice that the performance of MROrchestrator

is better than both Mesos and NGM for all but one job (PiEst)

(possibly because PiEst is a relatively shorter job, operating

mostly in single map/reduce phase). The average (across all the

6 jobs) percentage reduction observed with MROrchestrator

is 17.5% and 8.4% more than the corresponding reduction

seen with Mesos and NGM, respectively. We can observe that

NGM has better performance than Mesos with DRF scheme

(a multi-resource scheduling scheme recently proposed for

Mesos in [13]). One possible reason is the replacement of

slot with the resource container unit in NGM, which provides

more flexibility and finer granularity in resource allocations.

We next demonstrate the benefits from the integration of

MROrchestrator on top of Mesos (MROrchestrator+Mesos)

and NGM (MROrchestrator+NGM), respectively. The results

are shown in Figure 6(d). We can observe an average and a

maximum reduction of 12.8% and 17% in job completions

across all jobs, for MROrchestrator+Mesos. For MROrches-

trator+NGM, the average and maximum decrease in job com-

pletions is around 16.6% and 23.1%, respectively. Further, we

observe an increase of 11.7% and 8.2% in CPU and memory

utilization, respectively in the MROrchestrator + Mesos case.

For MROrchestrator + NGM, the corresponding increase in

CPU and memory utilization is around 19.2% and 13.1%,

respectively (plots not shown due to space limit).

There are two main reasons for the observed better perfor-

mance with MROrchestrator’s integration. First, irrespective

of the allocation units, the static characteristics in Mesos and

NGM still persist. On the other hand, MROrchestrator dynami-

cally controls and provides on-demand allocation of resources

based on the run-time tasks’ resource profiles. Second, the
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inefficiencies that arise due to the lack of global co-ordination

among nodes has yet not been addressed both in Mesos and

NGM. MROrchestrator incorporates such global co-ordination.

D. Performance overheads of MROrchestrator

There are some important design choices concerning the

performance overheads of MROrchestrator. First, the fre-

quency (or epoch duration) at which LRMs communicate

with GRM is an important performance parameter. We per-

formed detailed sensitivity analysis to determine the optimal

frequency value by taking into consideration the trade-offs

between prediction accuracy and performance overheads due

to message exchanges. Based on the analysis, 20 seconds

(four times the default Hadoop heartbeat message frequency)

is chosen as the epoch duration. Second, we discuss the

expected delay in detecting and resolving resource bottlenecks

in MROrchestrator. It consists of four major parts (overhead

for each is with respect to the 20 seconds epoch duration):

(i) resource usage measurements are collected and profiled

every 5 seconds (= heartbeat message interval). The associated

delay is negligible because of the use of a light-weight, built-

in Hadoop profiler. (ii) time taken in resource bottleneck

detection by Contention Detector is of the order of 10s of

milliseconds; (iii) time overhead to build the predictive models

by Estimator is less than 1% and 10% for UNIFORM and

REGRESSION schemes, respectively; and (iv) time overhead

to resolve contention by Performance Builder is within 4%.

Model Accuracy: With REGRESSION scheme, 90% of

predictions are within 10% and 19% accuracy for CPU and

memory usage models, respectively. For UNIFORM scheme,

the percentage error in prediction is within 35%.

V. RELATED WORK

Resource Scheduling in Hadoop: Scheduling techniques

for dynamic resource/slot adjustment for MapReduce jobs

based on their estimated completion times have been recently

addressed in [21], [22], [25]. Different resource scheduling

policies for Hadoop MapReduce have also been lately pro-

posed [15], [16], [23], [26].

However, these works do not address the fundamental cause

of performance bottlenecks in Hadoop, which is related to

the static and fixed-size slot-level resource allocation. The

current Hadoop schedulers [15], [16] are not resource-aware of

running jobs. Our proposed solution builds upon these short-

comings. Another important aspect where this paper differs

from existing systems is that we estimate the requirements of

each job at run-time (through predictive models) rather than

assuming that they are known a priori.

Fine-grained resource management in Hadoop: The

closest works to ours are Mesos [18] and Next Generation

MapReduce (NGM) (a.k.a YARN) [17]. Mesos is a resource

scheduling manager that provides fair share of resources

across diverse cluster computing frameworks like Hadoop and

MPI. NGM is the latest architecture of Hadoop MapReduce.

However, the dynamic run-time resource management is yet

not considered in both Mesos and NGM. MROrchestrator

addresses this missing piece.

We believe our current work is complementary to these

systems in that we share the same motivations and final goals,

but we attempt to provide a different approach to handle the

same problem, with a co-ordinated, fine-grained and dynamic

resource management framework, called MROrchestrator.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we analyzed the disadvantages of fixed-size

and static slot-based resource allocation in Hadoop MapRe-

duce. Based on the insights, we proposed the design and imple-

mentation of a flexible, fine-grained, dynamic and co-ordinated

resource management framework, called MROrchestrator, that

can efficiently manage the cluster resources. Results from the

implementations of MROrchestrator on two 24-node physical

and virtualized Hadoop clusters, with representative workload

suites, demonstrate that up to 38% reduction in job completion

times, and up to 25% increase in resource utilization can

be achieved. We further show how contemporary resource

scheduling managers like Mesos and NGM, when augmented

with MROrchestrator can boost their system’s performance.

We are pursuing two extensions to this work. First, we

plan to extend MROrchestrator with control of other resources

like disk and network bandwidth. Second, we plan to evaluate

MROrchestrator on a large utility cloud environment.
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