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ABSTRACT
Intended as a survey for practicing architects and researchers
seeking an overview of the state-of-the-art architectures for
data analysis, this paper provides an overview of the emerg-
ing data management and analytic platforms including par-
allel databases, Hadoop-based systems, High Performance
Computing (HPC) platforms and platforms popularly re-
ferred to as NoSQL platforms. Platforms are presented
based on their relevance, analysis they support and the data
organization model they support.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Architecture]: Design—paralllel distributed
architectures

General Terms
Design

Keywords
Software Architecture, Large Scale Data Analysis, Knowl-
edge Discovery from Data, Big Data, NoSQL, Massively
Parallel Processing

1. INTRODUCTION
This paper is organizes into four main sections - review of
the terminology that will be frequently used in the paper
when describing the architectures and trends in large scale
data analysis, survey of the most popular knowledge discov-
ery platforms and tools, taxonomic review of the architec-
tural styles for data analysis and review of the most popular
analytic platforms. Field of data analytic architectures is
broad, rapidly changing and complex. We therefore attempt
to survey the most relevant aspects of the field by reviewing
it from four different aspects - terminology, usage surveys,
taxonomies and implementations.

2. RELEVANT TERMINOLOGY
Before discussing the state-of-the-art architectures for knowl-
edge discovery from data we review the key terminology and
definitions used in the field of data analysis and knowledge
discovery.

2.0.1 Knowledge Discovery from Data
Knowledge Discovery from Data (KDD) is a set of activi-
ties designed to extract new knowledge from complex and
large datasets. It is an interdisciplinary field spanning com-
puter science, statistics, cognitive science, visualization, and
domain specific methods and expertise (e.g. medicine, eco-
nomics, government).

2.0.2 Data Analysis
Given the broad scope of the field data analysis, in this paper
we define data analysis as collection of the computational,
statistical and visualization methods for better understand-
ing of the data. Specifically, we consider these disciplines
as integral to data analysis and for understanding of the
requirements that drive the characteristics of the analytic
architectures:

• Machine Learning

Machine learning is a discipline that encompasses sta-
tistical, probabilistic and data mining techniques for
automated, repeatable and learnable classification, fil-
tering and categorization of data. Machine learning
techniques are broadly categorized as supervised, semi-
supervised or unsupervised.

• Data Mining

Although term data mining term is often used inter-
changeably with Knowledge Discovery from Data (KDD),
in the context of modern architectural practices where
KDD often encompasses data related but not exclu-
sively data focused operations, we define data mining
more narrowly as discipline concerned with data or-
ganization, preparation and (automated) discovery of
useful models and patterns in large datasets.

• Statistical Analysis

Statistical analysis is a collection of mathematical meth-
ods for exploratory and confirmatory analysis of large
amounts of data and discovery of the relationships,
trends and overall meaning of the data.



• Information Visualization and Visual Analysis

InfoVis[7] web site defines Information Visualization as
”process of transforming information into a visual form
enabling the viewer to observe, browse, make sense,
and understand the information. It typically employs
computers to process the information and computer
screens to view it using methods of interactive graph-
ics, imaging, and visual design. It relies on the vi-
sual system to perceive and process the information.”
Visual analysis is cognitively intensive but essentially
computer-mediated activity.

2.0.3 Major Data Analysis Architectures
The reminder of the section defines key technological termi-
nology and architectural concepts relevant for the survey of
the state-of-the-art analytic data architectures.

• Data Warehouse

According to one of the fathers of the field, Dr. Ralph
Kimball[23], data warehouse is ”conglomeration of an
organization£s data warehouse staging and presenta-
tion areas, where operational data is specifically struc-
tured for query and analysis performance and ease-of-
use”.

• Massively Parallel Processing (MPP) Databases

MPP is a computational technique that employs large
number of computational units (cores, processors of
separate machines) to perform a set of coordinated
computations in parallel. In the context of databases,
MPP architectures store data distributively and pro-
cess it in parallel.

• Shared-nothing Data Architecture

Shared-nothing term applies to the distributed data
management systems. Each data management server
manages and stores own copy of the data on its local
disk storage. This locality of the data allows for faster
data access since there is no network access overhead
associated with the shared storage devices.

• Distributed Parallel File Systems

Distributed file systems are the foundational and fun-
damental mechanisms for large scale data processing.
Distributed parallel file systems stripe data over mul-
tiple servers for high performance, parallel data access
and computation.

• Hadoop

Hadoop is an open source, Java-based programming
framework that supports the processing of large data
sets in a distributed computing environment. Design
of Hadoop’s core components, HDFS and MapReduce
was inspired by Google’s Google File System [19] and
MapReduce frameworks [16].

• Key-value stores

Key-values stores[29] are schema-less data management
systems with simplistic, key-value based data manip-
ulation semantics - inserts, updates and deletes.

• NoSQL

NoSQL is an umbrella term for the family of data man-
agement technologies characterized by no or simple
schema organization, key-value semantics and highly
scalable ”share nothing” storage organization. There is
no single definition that completely defines this pop-
ular concept. It is generally accepted that NoSQL
databases do not offer SQL semantics; they are not
ACID compliant, and they have distributed, fault-tolerant
storage architecture. There are however exceptions to
any of these characteristics within universe of technolo-
gies considered to be NoSQL databases.

• Hadoop File System DFS

The Hadoop Distributed File System (HDFS) is a dis-
tributed file system designed to run on commodity
hardware. It is not a file system in an operating sys-
tems sense - it is data storage and management layer
implemented in Java that features built-in, high fault-
tolerance. [13]

• MapReduce

MapReduce is a divide-and-conquer algorithm for par-
allel processing of data. Its first step, map,maps the
function onto a key-indexed data chunks. Upon the
application of the function, results are reduced, using
the same key-indexed scheme into a result set.

• Column oriented data stores

Traditional relational databases store its data in row
oriented fashion i.e. fields ai and aj of the row a are
stored contiguously and they precede all the fields of
the row b. In column oriented databases (aka ”Colum-
nars”), data is stored by the columns - i.e. fields a1, b1,
c1 of the rows a,b,c are stored contiguously and usually
on a separate data node in a shared-nothing architec-
ture. Column orientation offers performance benefits
for the data analytic operations where tabularly orga-
nized data is often accessed, aggregated and operated
on along the columns in a table.

• Column compression

Related to column orientation, column compressing
databases can store the compressed version of their
columns by storing only counts of the redundant data
instead of redundant data itself (for example, store
count of 10,000 repeated digits 0, instead of storing
actual number zero 10,000 times).

3. KDD PLATFORM ADOPTION STATIS-
TICS

We begin the survey of the architectures by presenting the
recent survey[22] conducted by KDnuggets web site. Survey
data shows the current state of adoption of data mining
software, big data technologies and programming languages
used for data mining and knowledge discovery.

We present here an abbreviated list showing top ten most
popular software packages. (Reference the KDNuggets web
site for the full list of packages and reported use.)



Table 1: Most Popular Data Mining Software
Software Respondents 2012 2011
R 245 30.7% 23.3%
Excel 238 29.8% 21.8%
Rapid-IRapid Miner 213 26.7% 27.7%
KNIME 174 21.8% 12.1%
Weka/Pentaho 118 14.8% 11.8%
StatSoft Statistica 112 14.0% 8.5%
SAS 101 12.7% 13.6%
Rapid-IRapid Analytics 83 10.4% N/A
MATLAB (80 10.0% 7.2%
IBM SPSS Statistics 62 7.8%ă 7.2%

Figure 1: Data mining software

KDNuggets survey for 2012 also includes a new statistic on
the adoption of ”Big Data” technologies for data analysis
and knowledge discovery:

Table 2: Big Data Technologies used in 2012
Software Respondents 2012
Hadoop/Hbase/Pig/Hive 67 8.4%
Amazon Web Services (AWS) 36 4.5%
NoSQL databases 33 4.1%
Other Big Data Data Software 21 2.6%
Other Hadoop-based tools 10 1.3%

Figure 2: ”Big Data” technologies

As data analysis is often highly specialized activity, develop-
ment of the custom codes is customary. KDnuggets survey
includes the statistics on use of programming languages in
such tasks. Data indicates the dominance of the R and SQL
programming languages, which, as reported, are being used
by over 50% of the survey respondents.

Table 3: Programming Languages
Programming Language Respondents 2012
R 245 30.7%
SQL 185 23.2%
Java 138 17.3%
Python 119 14.9%
C/C++ 66 8.3%
Other languages 57 7.1%
Perl 37 4.6%
Awk/Gawk/Shell 31 3.9%
F# 5 0.6%

Figure 3: Programming languages used in custom
codes for data mining

4. ARCHITECTURES
In this section we outline the most common platforms for
knowledge discovery from data; we define their essential ar-
chitectural properties, and we describe the representative,
the most widely adopted implementations.

4.1 Relational and Data Warehouse Manage-
ment Systems

The oldest and the most established platform of all pre-
sented, relational data warehouses have been both challenged
and transformed by the exponential increase in needs for
data collection, storage and analysis. Traditional, mono-
lithic data warehouses have evolved into massively parallel
processing (MPP) systems capable of processing petabytes
of data[26].

Although MPP architectures vary (e.g. master-master or
master-slave), in its most common implementation MPP
databases consist of a master node and a multiple, shared-
nothing, parallel slave segments connected via high speed
network interconnect. These systems also offer either exclu-
sively column orientation and column compression or hybrid
column/row orientation with column compression.

Commercially, this is a very competitive market with lead-
ers, according to Gartner’s annual Data Warehouse market
survey[12], being Teradata, Oracle, IBM, EMC Greenplum,
SAP/Sybase and Microsoft.

Primary
Segment 1

Master
Node

Master
Mirror
Node

Data File

Transaction 
Log

Primary
Segment 2

Data File

Transaction 
Log

Primary
Segment n

Data File

Transaction 
Log

Data File

Transaction 
Log

Mirror
Segment 2

Data File

Transaction 
Log

Mirror
Segment 1

Data File

Transaction 
Log

Mirror
Segment n

...

...

Figure 4: Massively Parallel Processing Database
Architecture (Master-Slave)

4.2 Hadoop
Apache Hadoop[33] is an umbrella project for number of
Java-based software packages and APIs for data manage-
ment, organization, analysis and job scheduling at a very
large scale. At the core of Hadoop are HDFS - Hadoop
File System and MapReduce programming API. In addi-
tion to HDFS and MapReduce API, Hadoop consists of data
warehousing software (Hive), massive scale column oriented
database management software (HBase), machine learning
library (Mahout), job tracking and scheduling suite (ZooKeeper
and Pig) and other related libraries and packages for mas-
sively parallel and distributed data management.
Hadoop is used extensively in industry and academia for va-
riety of tasks with log mining, structured and unstructured
data analysis being some of the most frequent use cases.
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Figure 5: Hadoop Technology Stack

4.3 NoSQL
NoSQL databases in general offer flexible and scalable stor-
age and query services under usually open source licenses.
NoSQL databases are available with most of the public and
private Cloud services offering an attractive solution for highly
scalable, low cost data management needs.

Within NoSQL movement, dominant database architecture
models are:

• Key value stores

• Document stores

• Graph databases

In this paper, within NoSQL domain, we give a somewhat
more detailed overview of the Graph databases.

4.3.1 Graph databases
Graph databases are specialized data stores featuring se-
mantics based on concepts from graph theory, and they use
nodes, edges, edge labels and attributes as primary means
for logical data representation. Primary value proposition
of the graph databases is their ease of use and high perfor-
mance of associative and random data access.

Physical implementation of graph databases differs, and it is
not unlikely to find columnar, key-value or some other data
stores as underlying persistence mechanisms. Primary use of
graph databases is in flexible representation of asymmetric
relationships and in mining of social networks.

Code sample below shows the ease of use in working with
graph database, and how creating and saving associations on
the fly dynamically augments schema-less representation.

from bulbs.neo4jserver import Graph,Config,NEO4J_URI

# connection logic

config = Config(NEO4J_URI, "username", "password")

g = Graph(config)

#lookup medical provider by its indexed attribute ID

providers = g.vertices.index.lookup(provider_id="101")

#iterate through the list of retrieved providers

for provider in providers:

patients = provider.outV("treats")

# if this patient is in medicare then this provider

# serves patients in medicare and medicaid

# - it is dual provider

if patient.primary_plan == "medicare":

provider.dual = True

provider.save()

Using Neo4J and Pyhon Bulbs to flexibly query and add
attributes on the fly

Some of the leading implementations of Graph databases
are Neo4J,AllegroGraph,InfiniteGraph, HyperGraphDB, In-
foGrid and Google Pregel.

4.4 Hadoop-Relational Hybrids
There is an active, ongoing discussion in database commu-
nity of what is a proper delineation between Hadoop-based,
”NoSQL” and relational derivatives[9], [32].

We outline here some of the representative implementations
that offer different style of SQL-NoSQL amalgamation.

4.4.1 Google BigQuery
BigQuery is Google’s commercial service based on the Dremel[25]
platform for interactive analysis of very large scale data sets.
Dremel combines ideas from web search and parallel DBMS
architectures:

• Serving-tree based query processing - Dremel’s query
processing design borrows the concept of a serving tree
found in distributed search engines [15]. In Dremel,
query is percolated down the tree and rewritten at each
step. The results are assembled by aggregating the
replies received from lower levels of the tree.

• SQL-like semantics - Dremel provides a high-level, SQL-
like language to express ad hoc queries. Dremel exe-
cutes queries natively without translating them into
MapReduce jobs.

• Column-oriented storage - Dremel uses a column-oriented
storage representation.

4.4.2 HadoopDB
HadoopDB[10] is a hybrid implementation of the parallel
DBMS and Hadoop. HadoopDB utilizes relational nodes
for fast execution of queries and Hadoop job tracking and
metadata catalog infrastructure for scheduling, tracking and
results assembly of parallel queries.

HadoopDB consists of four components:



• Database Connector - The connector executes a SQL
query on the database and returns results as key value
pairs.

• Catalog - The catalog keeps the information needed to
access the databases and metadata related to cluster
data sets, replica locations and data partitions.

• Data loader - The data loader executes MapReduce job
over Hadoop that reads the raw data files and parti-
tions them into as many parts as the number of nodes
in the cluster.

• SQL to MapReduce to SQL planner - The SQL-MR-
SQL planner provides a parallel database front end for
SQL queries. The planner translates the SQL queries
into MapReduce jobs and optimizes the query plans
for efficiency.

HadoopDB’s reported performance approaches the perfor-
mance and efficiency of parallel databases while offering scal-
ability, fault tolerance and flexibility of Hadoop-based sys-
tems. HadoopDB is commercially offered as Hadapt[?].

4.4.3 Parallel Databases with Hadoop Connectors
This type of architecture is generally implemented as a mas-
sively parallel, RDBMS-based system capable of connect-
ing into Hadoop (HDFS) for data loading and execution of
MapReduce jobs. Most solutions in this space offer some
form of native MapReduce-SQL semantics as well. Three
most prominent representatives of this style of the architec-
ture are Greenplum[3], Aster[?] and Vertica [4].

4.5 High Performance Computing(HPC) Plat-
forms

High Performance Computing (HPC) is a discipline of a
computational science focused on solving complex and com-
putationally intensive science, engineering and business prob-
lems on specialized platforms. Computations performed on
HPC platforms are usually characterized by massive par-
allelism and movement of ”data to computation” which re-
quires high bandwidth, low latency networking, massive num-
ber of compute cores (1000s) and high memory capacity
as well as specialized software tools, APIs and algorithms.
HPC platforms often incorporate General Processing Units
(GPUs) for numerically intensive computing.

4.6 Others
In addition to parallel, Hadoop-based and graph oriented
data analysis systems there are also families of data an-
alytic architectures supporting specialized sub-domains of
knowledge discovery: text/document and XML mining, geo-
spatial, audio, video and signals analysis.

5. ARCHITECTURAL TAXONOMIES
In this section we survey some of the architectural tax-
onomies influenced by the most important constraints in
data analysis - completion time bounds for analysis and data
volume, representation and storage considerations.

5.1 Temporally Characterized Architectures
Temporal bounds for data analysis have the most defining
impact on the nature of the data analytic architectures.
Time bounds and constraints may require costly and spe-
cialized approaches to how is data stores and organized. We
outline here three major temporally oriented types of analy-
sis that fundamentally shape the characteristics of the data
analysis and knowledge discovery architectures.

5.1.1 Platforms for Streaming Data Analysis
Data stream mining is a process of extraction of informa-
tion and knowledge discovery from continuous, rapidly gen-
erated streams of data such as computer network traffic,
system and usage logs, phone calls and conversations, ATM
and credit card transactions, web searches, and sensor data.
Data stream mining imposes unique constrains on the archi-
tectures usually manifested by a need for fast and often dis-
tributed analysis where analytic functions are pushed closer
to the sources of data.

Stonebraker et al. [30] outline following three general archi-
tectural types for streaming data processing:

• Database Management Systems (DBMSs) - DBMS serve
as collection and analytic points

• Rule engines - rule oriented software that executes set
of rules on collected streams of data

• Stream Processing Engines (SPEs) - specialized stream
processing software

Recent implementations of the stream data processing model
at the large scale are Apache S4[28] implemented at Ya-
hoo!, Apache Kafka[20] implemented at LinkedIn, Apache
Flume[1], Twitter Storm[?] and Spark Streaming[?].

5.1.2 Platforms for Interactive Analysis
Interactive data analysis is a form of data analysis and knowl-
edge discovery conducted interactively by a human user while
exploring the data sets in a real time. This type of analysis is
often facilitated via visualization tools, ad hoc queries, ”what
if” analysis and supported by data management systems
capable of searching through and aggregating very large
datasets.

Traditionally, architectures for interactive data analysis con-
sisted of business intelligence tools attached to a relational
datamart. Recently, this model has evolved to combine busi-
ness intelligence tools with MPP databases. With emergence
of ”big data” technologies and visualization tools the archi-
tectural landscape has divesified. Several recent implemen-
tations have demonstrated use of alternative models for in-
teractive analysis[25] including NoSQL implementations[27].

5.1.3 Platfroms for Batch Oriented Analysis
Batch oriented analysis systems are the oldest, most es-
tablished platforms for data analysis. Mainframe systems
that still permeate markets[2] continue to perform analysis
largely in a batch mode. Even the most recent ”big data”
platforms such as Hadoop operate in a batch mode. This



mode of operation is usually suitable for large data mining
and machine learning tasks, and platforms such as Hadoop
with Mahout offer low cost, high reliability alternative to
costly mainframe architecture[17].

5.2 Storage and Data Representation Charac-
terized Architectures

In this section we review some of the most recent trends in
architectures influence by physical organization of the stor-
age and logical representation of data.

5.2.1 In-Memory Databases - Local and Distributed
In-memory databases rely primarily on main memory for
data storage. In-memory databases run significantly faster
than disk-oriented databases since these types of databases
can remove transactional data structures and algorithms
needed in hard disk based databases[18]. Currently, in-
memory databases are used either as content and analytic
data caching systems, or for data analytic operations, such
as streaming data analysis, where low latency and response
times are critical[24]. In-memory databases are often imple-
mented as relational systems stripped of latching and log-
ging mechanisms[31], or as a key-value, hash table oriented
stores[34].

5.2.2 Disk Based, Distributed Databases
As we already discussed, all three major, large scale, data
analytic architectures - Hadoop, Massivelly Parallel Process-
ing Databases and High Performance Computing systems
employ some form of massively parallel processing model
for data analysis and computation. Lower cost of hardware,
commoditization of high speed networks (10 GigE, Infini-
band) and increases in both core counts and CPU clock
speeds make previously prohibitively costly
architectures feasable.[21] Within distributed architectures
there are further classifications based on how is the shared
storage organized and what are the associated consistency-
availability-partitioning tradeoffs. [14]

5.2.3 Linked Data Oriented
Linked Data Oriented Architecture (LOA) is a logical, dis-
tributed data representation model that represents the data
as collection of links, navigable via Uniform Resource Iden-
tifiers (URIs). LOA and related platforms are based on the
principles of publishing on the web, originally outlined by
Tim Berners-Lee[11] in his notes for Linked Data design:

• Use URIs as names for things

• Use HTTP URIs so that people can look up those
names

• When someone looks up a URI, provide useful infor-
mation, using the standards (RDF, SPARQL)

• Include links to other URIs, so that they can discover
more things

This type of architecture facilitates the process of knowledge
discovery by enabling the machine or human user to navi-
gate the graph of links and discover new relationships and

facts embedded in the network of links. Unlike distributed or
in-memory data store models, Linked Oriented Architecture
does not yet have formally established performance heuris-
tics and architectural best practices for how should data be
stored and organized. The assumption is that linked data
based architectures offer greater flexibility of knowledge rep-
resentation and ease of navigation of the knowledge graph
than alternatives. Recent implementations of LOA-like ar-
chitecture is Google’s Knowledge Graph[5], DBPedia and
Freebase.

5.3 Conclusion
With this paper we attempted to offer a broad survey of data
analytic architectures with somewhat narrower focus on the
general emerging trends and architectural taxonomies rele-
vant for the effective implementation of data analytic op-
erations. Field of data analysis and related data analytic
architectures is continuously evolving, so we encourage fur-
ther explorations and frequent surveys of the leading pub-
lications and conferences organized by ACM’s special inter-
est groups on data management systems (SIGMOD) and
knowledge discovery from data (SIGKDD). In the domain
of data analysis, industry and creative individuals are often
advancing at the faster pace than research and academic
communities, so we also recommend following trade confer-
ence such as Hadoop World, O’Reilly Strata and NoSQL
Now!. High Availability[6] and myNoSQL[8] blogs are also
excellent sources of information.
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