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Abstract—Compartmental models in epidemiology are widely
used as a means to model disease spread mechanisms and
understand how one can best control the disease in case an
outbreak of a widespread epidemic occurs. However, a signifi-
cant challenge within the community is in the development of
approaches that can be used to rigorously verify and validate
these models. In this paper, we present an approach to rigorously
examine and verify the behavioral properties of compartmen-
tal epidemiological models under several common modeling
scenarios including birth/death rates and multi-host/pathogen
species. Using metamorphic testing, a novel visualization tool
and model checking, we build a workflow that provides insights
into the functionality of compartmental epidemiological models.
Our initial results indicate that metamorphic testing can be
used to verify the implementation of these models and provide
insights into special conditions where these mathematical models
may fail. The visualization front-end allows the end-user to scan
through a variety of parameters commonly used in these models
to elucidate the conditions under which an epidemic can occur.
Further, specifying these models using a process algebra allows
one to automatically construct behavioral properties that can be
rigorously verified using model checking. Taken together, our
approach allows for detecting implementation errors as well as
handling conditions under which compartmental epidemiological
models may fail to provide insights into disease spread dynamics.

I. INTRODUCTION

A. Compartmental Models in Epidemiology

Compartmental epidemiological models are used by a wide
community of epidemiologists, public health officials and
scientists to model how diseases spread and what strategies of
control are most likely to succeed in case an epidemic occurs
within a given population. Compartmental models segregate a
population into distinct groups, namely, S - susceptible (part
of the population previously unexposed to the pathogen); I
- infected (part of the population affected by the pathogen);
E - exposed (part of the population that is infected by the
pathogen but not infectious); and R - recovered (part of the
population that has successfully been cured of the infection).
Although a number of different compartmental models exist
such as SIR, SEIR, SIS and others, the selection of a particular
disease model is inherently dependent on the disease, pathogen
and the population it affects. Several studies have previously

shown how compartmental models can successfully capture
the behavior of a disease outbreak and what strategies of
intervention may be most effective to combat the disease.

Compartmental models use ordinary differential equations
(ODEs) to model the aspects of disease spread and control.
We will first describe the SIR model, which is the simplest
of the models. The SIR model uses three divisions in the
population, namely (S, I,R). ODEs describe the dynamics
of how individuals move from one group to the other, for
example: S → I or from I → R and so on. Intuitively,
once an individual is infected (I), s/he can move to the
recovered (R) compartment, when s/he has successfully been
cured of the infection. Once a person is infected, there is
a mean time for which the person remains infected, which
can be estimated from clinical data. Thus, the probability of
an individual moving from I to R (I → R) is inversely
dependent on the mean infectious period (represented as γ,
and also referred to as the recovery rate). The progression
from S to I (S → I) is dependent on three factors, namely,
the number of infected people, the underlying population
structure/demography (i.e., how people are connected to each
other, number of deaths/births, etc.), and the infection rate of
the disease (denoted as β). In the simplest possible model, it is
possible to forget the underlying demography and just capture
a closed population with uniform mixing probabilities. The
transmission term would then be a product of the infection
rate along with the S and I compartments. Based on these
observation, it is possible to describe the disease spread
dynamics of the SIR model using the ODEs shown below:

dS

dt
= −βSI; (1)

dI

dt
= βSI − γI; (2)

dR

dt
= γI. (3)

The SIR model can be further refined to include demographics,
where we introduce a mortality rate (µ) in the population. The
ODEs describing the SIR model with demographics will then



Fig. 1. Illustration of SIR and SEIR models in epidemiology. (A) The simple SIR model without demography, with the following parameters (β, γ) =
(1.4247, 0.1429) and initial conditions as: [S(0), I(0), R(0)] = [1− 1× 10−6, 1× 10−6, 0]. Note the peak in the proportion of infected patients to that of
the healthy population. (B) Illustration of the SEIR model with the same initial conditions, but with µ = 1/70×365. Note the oscillatory dynamics exhibited
by the disease spread, as a consequence of introducing mortality rate in the population.

include:
dS

dt
= µ− βSI − µS; (4)

dI

dt
= βSI − γI − µI; (5)

dR

dt
= γI − µR. (6)

From the specification of the SIR model, it is quite clear that
the sum of (S, I,R) at every instant (t), must be 1. A second
behavior that we also observe is regarding when the spread of
the disease will fail: if the initial number of susceptible (S(0))
individuals is less than γ/β, then there will be no infection
spread in the population. It is also interesting to note that
the long term (asymptotic) behavior of the SIR model will
lead to a situation where, in spite of having some susceptible
population, the transmission of the disease will die down due
to the lack of infected people. A third property that we can
observe is that the SIR model with demography can exhibit
oscillatory behavior (see below). An illustration of the simple
SIR model is shown in Fig. 1A.

While the SIR model can be further refined to include
demographics, heterogeneous interacting networks of individ-
uals and different models of disease transmission, the simple
SIR model cannot describe the dynamics of disease spread
in the case of pathogens which need to be incubated to
rapidly reproduce in the host before becoming infectious.
Thus, there is a latent period (represented by 1/σ) prior to
which no infections can spread. This additional constraint
on how the pathogen spreads adds an additional class of
population, referred to as exposed (E), who are infected, but
cannot transmit it to the susceptible population. Taking these
additional model parameters, the SEIR model can be described
using the ODEs shown below:

dS

dt
= µ− βSI − µS; (7)

dE

dt
= βSI − µE − σE; (8)

dI

dt
= σE − µI − γI; (9)

dR

dt
= γI − µE. (10)

Behavioral properties similar to that of the SIR model can be
defined for the SEIR model. However, an important distinction
from the original SIR model, is that the SEIR model exhibits
oscillatory behavior as the amplitude of the I values fluctuates
and declines over time as the system equilibrates. For example,
as illustrated in Fig. 1B, the SEIR model shows a distinct
oscillation over every ∼ 1200 days.

The behavioral properties described here represent a small
subset of properties that can be obtained from the mathe-
matical models. For a more comprehensive list of behavioral
properties for different models, the interested reader is referred
to [8].

B. Verifying Behavioral Properties of Epidemiological Models

The compartmental models described above provide an
overview of how disease spread models can capture the diverse
behavior of infectious diseases within a given population. The
traditional view of validating these models has relied on the
availability of clinical data from which a number of parameters
are estimated and then fit to describe the underlying dynamics
of disease spread. However, with increasing complexity in
the nature of emergent diseases and population models, com-
partmental models have been augmented with other behaviors
including stochastic models and spatio-temporal dependencies
to understand the nature by which diseases may spread. These
models are now being used by policy and public health
officials to define intervention strategies for various diseases.
Making such critical decisions based solely on models, without
rigorously evaluating how and where these models might fail
can have drastic impact on the social and economic systems in



case an intervention strategy fails. The increasing complexity
of models also increases the number of parameters to include,
which in turn results in a complex landscape to be modeled
and understood. Further, with the development of agent-based
models for epidemiology, the potential state-space for such
systems can be quite enormous and complex, leading to a
greater difficulty in validating and verifying if the disease
spread models can be used to predict emergent behavior
as well as strategies that can contain a disease outbreak.
Therefore, there is a need to develop automated approaches
to verify and validate such epidemiological models.

An important aspect of checking the behavioral properties
of the models described above is to ensure that they are
correctly implemented. Thus, formal testing techniques are
necessary to obtain insights into implementation issues. In this
paper, we use metamorphic testing as a tool to verify if the
implementation of the SIR/SEIR models are correct. We input
the results from simulating the disease spread model as well as
metamorphic testing to a visualization toolkit, namely multi-
dimensional data explorer (MDX) [10] to identify implementa-
tion errors within the models. Then, we verify several aspects
of disease spread, including quantities such as maximum
number of infected individuals (epidemic peak value), the
time at which the maximum infection occurs (epidemic peak
time), total number of infected individuals at any given time
using model checking to reveal behavioral errors within the
compartmental epidemiological models.

The rest of the paper is organized as follows: in the next
section, we describe the methods used for verifying disease
spread models. We provide a brief overview of related work
in the areas of metamorphic testing, visualization and model
checking and how they have been applied to verify epidemi-
ological models. We then briefly summarize our experience
in using these tools to verify and validate the SIR/SEIR
compartmental models under three different scenarios. Finally,
we conclude with a perspective of how our results shed
light on creating a verification and validation framework for
epidemiological models and how we can further improve these
approaches.

II. METHODS

The research described in this paper used a series of tools
including metamorphic testing, model checking and visual
analytics to verify compartmental epidemiological models. A
schematic illustrating our workflow is shown in Fig. 2.

A. Metamorphic Testing of Epidemiological Models

Metamorphic testing was introduced by Chen and co-
workers [12] to overcome the problem of the lack of a test
oracle. The general idea behind metamorphic testing is to
use well defined relations for a particular input such that the
outcome can be tested. For example, consider a computer
program which calculates the function cos(x). While standard
tests will include the values of x = {0, 60, 90}, for which
cos(x) = {1, 0.5, 0}, one approach to metamorphic testing
uses the identity cos(2x) = 2cos2(x) − 1 to determine if

Fig. 2. Overview of workflow to verify epidemiological models. Using
metamorphic testing, a novel visualization toolkit and process algebras, we
were able to specify the behavioral properties of epidemiological models and
verify them using a model checker. The outputs enable us to evaluate if and
under what conditions these models fail.

the program is working correctly. This approach has been
used to successfully test several bioinformatics applications
and heat-transfer models. It must be noted that metamorphic
testing requires definitions of relations for which the output
can be known a priori; however, in epidemiological models,
such relations can be challenging to define.

Instead of explicitly defining metamorphic relations on the
differential equations itself, we use the constants β, γ and
µ (Models 1, 4 and 7) to evaluate how the models behave
with different values. For example, note that the SIR model
with demography (Model 4) is a simple extension of the SIR
model, with an additional parameter, namely, µ. By setting
both µ to zero in this SIR model, one must obtain back the
simple SIR model (Model 1). Thus, this ‘morphing’ of the SIR
model should constitute the same results from the SIR model.
In a similar manner, setting (µ,E) to zero in the SEIR model,
should result in the simple SIR model above.

We also performed a scan of different β and γ values for
both the models and tested if the decrease/increase corresponds
to the expected decrease/increase in the proportion of sus-
ceptible, infected and recovered population. These parameter
scans allow us to evaluate under what conditions an epidemic
may manifest, especially, since from the differential equation
model, we know that the behavioral specification for an
epidemic to spread is β/γ > 1. This allowed us to measure
changes in (S,E/I,R) and trace through the runs to obtain a
behavioral landscape of the models. The scanned parameters
were then input into the visualization tool to examine the
different models.

B. Visualizing parameter sweep and metamorphic testing

An important aspect of epidemiological model analysis
is the determination of relationship between variables and
the identification of the most significant associations. With



conventional tools, unexpected discoveres are nearly impos-
sible. We have applied the Multidimensional Data eXplorer
(MDX) system to analyze the parameter sweeps. MDX has
been successfully applied to sensitivity analysis and more
general exploratory data analysis of climate model simulation
data [9] and long term climate studies [10] but this is the first
application of the tool to empidemiology model analysis.

MDX is built around a popular multivariate information
visualization technique called parallel coordinates. The par-
allel coordinates technique was initially popularized by Insel-
berg [6] as a novel method for representing hyper-dimensional
geometries, and later demonstrated in the direct analysis of
multivariate relationships in data by Wegman [11]. In general,
the technique yields a compact two-dimensional representation
of even large multidimensional data sets by representing the
N -dimensional data tuple C with coordinates (c1, c2, . . . , cN )
by points on N parallel axes which are joined with a poly-
line [7]. The interactive parallel coordinates display is an
effective method for analyzing the parameter sweeps because
of the multidimensional display capabilities. A common set of
parallel coordinates capabilities such as reconfigurable axes,
details on demands, and axis inversion are available in MDX.
The parallel coordinate plot has also been extended with a
number of capabilities that facilitate exploratory data analysis
and guide the user to the most significant relationships in the
data. These features are highlighted in the following results
but the reader is encouraged to explore prior publications for
a more detailed explanation. [10]

C. Model-checking Epidemiological Models

Metamorphic testing provides a means to check whether
the compartmental models are implemented correctly, and
elucidate certain behavioral constraints imposed by scan-
ning the respective parameters used in the compartmental
epidemiological models. However, metamorphic testing may
not fully explore all possible behaviors that are explored by
ODE models. For example, consider the behavioral property
where we want to estimate the probability that the number of
infected patients (I) will be less than susceptible (S) people.
Using metamorphic testing to examine all possible values
of (S, I,R) and (β, γ) to estimate this probability can be
cumbersome. Hence, formal methods and model checking can
be complementary means to verify the correctness of these
models and identify (automatically) behavioral properties that
can fail, apart from characterizing them in the context of
runtime behaviors of such systems.

Developed initially to capture faulty behavior in both hard-
ware and software, model checking has now routinely been
used to verify biological applications. Formal methods have
been used to understand and characterize the behaviors of epi-
demiological models in the context of several applications, in-
cluding modeling avian influenza and treatment strategies [3],
describing conditions of disease outbreak and control across
populations [4], [5]. These models have focussed on the use of
formal methods to capture the behaviors of SIR/SEIR models
and examine different mechanisms of intervention (such as

isolation or vaccine treatment) and to study their outcomes.
In this study we propose to examine the model checking of
SIR/SEIR models under a variety of scenarios.

The models for our study were constructed using Bio-
PEPA [2], a process algebra specifically developed for model-
ing biological/biochemical systems. These models were then
input into PRISM, a model checker. We considered three
common scenarios for compartmental models that are used
by epidemiologists: (1) SIR/SEIR models (with and without
mortality); (2) host-heterogeneity within the SIR model (chil-
dren/adults) and (3) multi-pathogen models. The differential
equation models were initially input into Bio-PEPA and au-
tomatically converted into a PRISM model using the Bio-
PEPA Eclipse plugin. The Eclipse plugin also provides a set
of behavioral properties to check. A list of these properties
are discussed further in the Results section.

III. RESULTS

A. Metamorphic Testing and Data Visualization

We begin by examining the results of metamorphic testing
on the SIR/SEIR models outlined in the introduction section.
First, we consider the setting µ = 0 in the SIR model with
demography (4) must result in the original SIR model (1).
Indeed, when we simulate the system by replacing µ = 0
in model (4), we find that the SIR model with demography
reduces to the simple SIR model. A similar observation can
also be made, when E = 0 in the SEIR model, which
reduces to the SIR model with demography. A subsequent
test of setting (µ,E) to zero, results in conversion of the
SEIR model (with demography) to the simple SIR model. We
also observe that when µ = 0, it results in destroying the
oscillatory behavior in the SIR and SEIR models. In our tests,
we found that this approach of morphing allowed us to verify
that the implementations of the more complex models reduced
to the simple SIR model under special conditions mentioned
above. In the context of metamorphic testing, the inherent
relationships between the SIR → SIR-demography → SEIR-
demography models allows us to examine the relationship
between the addition of newer parameters and change in
the behavioral properties of the system depending on these
parameters.

A second test that we performed included a scan of (β, γ)
for the SIR and SEIR model. In scanning through these
parameters, we found under what conditions an epidemic may
prevail. For example, we illustrate this by setting β = 1 and
varying γ from a minimum of 0.2 to maximum of 0.5. The
parameter settings are collectively visualized using the MDX
tool. It is quite evident from the figure that when the value
of γ is higher than β, there is no epidemic, as evidenced by
the top lines in the susceptible column of the plot. However,
as γ values tend to rise, there is a subsequent increase in
the number of infected and recovered population. Thus, this
simple scan of parameters allows us to visualize how β and γ
are dependent on each other and further allows us to examine
the behavioral properties of the simple SIR model in terms of
when an epidemic may prevail in the population.



Fig. 3. In this case, we have selected the tuples with β = 1 and γ is between 0.2 and 0.5 (inclusive) to show sensitivities for the SIR simulation variables.

A similar scan of all parameters used in the SIR/SEIR
can be visualized using the MDX tool, though we do not
describe them in detail here due to lack of space. However,
we must note that by scanning the parameter ranges for each
of the models allows us to examine the special conditions
under which an epidemic can prevail (or not prevail) as well
as provide for a framework to visualize the data depending
on certain ranges of the parameters used. In the case of
epidemiological models, we found that parameter scanning
along with data exploration and visualization provides novel
insights into the behavioral properties of these models.

B. Model Checking

In the previous section, we discussed our results from the
perspective of using metamorphic testing and visualizing how
different parameters of the epidemiological models influence
their behavioral properties. In this section, we discuss how
one can formally specify and verify the behavioral properties
of SIR/SEIR models using model checking. As outlined in the
methods section, we used Bio-PEPA as a tool to specify the
epidemiological models. The Bio-PEPA specification for the
simple SIR model, introduced in model (1) is shown below:

beta = 1.4247;
gamma = 0.1429;

kineticLawOf infect : beta*S*I;
kineticLawOf recover : gamma*I;

S = infect <<;
I = infect >> + recover <<;
R = recover >>;

S[100] <*> I[0] <*> R[0]

The SIR model is translated into a Bio-PEPA specification
by first defining the rate constants and then defining each
term of the differential equations as a kinetic parameter in
the model. The differential equations are themselves encoded
by the different kinetic parameters, with >> indicating an
increase and << indicating a decrease in the different species
of the system (S, I,R). Finally, the initial conditions are
defined using the < ∗ > term, indicated. The PRISM model
generated automatically from the Bio-PEPA specification also
specifies a number of behavioral properties that can be verified
using the model checker in PRISM. A few examples of
the behavioral properties that can be verified in PRISM are
illustrated below:

• Expected number of (S, I,R) at any given instant of time
t.

• Probability of reaching the maximum number of (S, I,R)
before time t.

• Probability of stability in the states of (S, I,R).

Complementary to the tests performed using metamorphic test-
ing that capture initial conditions and implementation issues,
model checking can provide any insights into the behavioral
properties that we described in the introduction for each of
the models considered (SIR, SEIR, SIR with demography
and SEIR with demography). The simple SIR model has a
total of 7,171 states with ∼ 14, 000 transitions defined by
the PRISM model. Each state in the system corresponds to a
specific configuration of (S, I,R) at some time instant t and
the transitions correspond to the path taken by the program
to reach those states. Model checking involves computing
over this state-space the probable ways of reaching each state
through a connected transition. In the case of the simple SIR
model, for example, we found that the expected number of
(S, I,R) at an instant t = 10 to be (78.1, 28.4, 12.449).



Similarly, we can determine the probabilities of each of the
behavioral properties specified above depending on the initial
conditions. These properties allow us to know if (and what)
behaviors of the SIR model are stable and valid at every time-
instant.

IV. DISCUSSION AND CONCLUSION

With the development of complex epidemiological mod-
els, large scale simulations of epidemic spread and various
intervention strategies are becoming highly popular in the
literature. However, there is much speculation whether these
complex models would be useful in real-time situations, espe-
cially when data collection, assimilation and analysis for these
complex models have become a limiting factor in obtaining
critical insights and predicting how a disease may spread and
how one can control its spread. Therefore, there is an emerging
need to develop rigorous approaches to verify and validate
such complex epidemiological models.

In this paper, we have proposed and developed a preliminary
approach using metamorphic testing, data visualization and
model checking techniques to formally verify and validate
compartmental epidemiological models. Beginning with meta-
morphic testing, where more complex models were reduced to
simpler models by controlling certain parameters, we were
able to obtain insights into how the SEIR model and SIR
model with demographic data can be reduced to the simple
SIR model. By varying the distribution of the parameters that
control the behavior of these models, we were able to obtain
insights into the behavioral properties of system, especially in
the context of when an epidemic would occur, and how long
it would last and so on. While we have found metamorphic
testing of behavioral aspects of ODE based systems can be
challenging, the testing strategies described here have allowed
us to examine whether a particular model exhibits all known
behavioral properties that can be obtained by analyzing the
ODE systems. The visualization tools proposed here could
also serve as a platform for further data analysis, especially for
epidemiologists to visually cluster and analyze their large-scale
data sets based on individual parameters of interest. The use of
model checking, although not entirely new to epidemiological
models, has allowed us to explore the various behavioral
properties of these models in an automated fashion. Taken
together, these tools have provided a framework to examine,
verify and validate compartmental epidemiological models.

A future direction in our research would be to address how
one can integrate testing and verification tools to study epi-
demiological models, including compartmental (or population)
and agent-based models. One aspect to note is that although
model checking can be used to verify simple SIR/SEIR
models, exploring larger and complex models can render the
state-space (and the behavioral properties) to be verified quite
untenable for even efficient model checkers. For example, in
the SEIR model with demography and including different age
groups, we found that the state-space had exceeded nearly
1 million states. Exploring such large state-spaces is already

a concern being addressed by the model checking commu-
nity [1].
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